
DJ: Distributed JIT
(Preprint, here be dragons)

Matthew Francis-Landau, John Kubiatowicz
UC Berkeley

{mfl,kubitron}@cs.berkeley.edu

Abstract
We present DJ our attempt at a Distributed JIT framework
which allows for distributed computation and memory to be
treated as fluid that can be sloshed around between available
machines for optimal performance. Unlike traditional JITs,
which exhibit close coupling between code generation and
optimization policies, we have a unique two level approach
where policies receive event notification callbacks from the
runtime engine.

1. Introduction
Given the abundance of cloud platforms and massive datasets,
distributed system are becoming common ubiquitous for
managing these new requirements. Unfortunately, the cur-
rent landscape of distributed system leaves a significant bur-
den on the programmer to reformulate their program inside
of new programming paradigms. Instead of requiring time
consuming and error prone manual rewriting efforts, DJ at-
tempts to allow the programmer to write their program as
if they are targeting a single host and allow DJ to automati-
cally determine optimal memory placement and distribution
methods using JIT methods such as tracing ??. The main
features that the JIT has to work with automatically con-
verting methods to remote procedure calls (section 4.5) and
relocation of objects (section ??) both of which are designed
to facilitate reducing the distance between computation and
memory.

2. Previous work
There currently exists a wide verity of distributed program-
ming systems and platforms. The main differences between
systems can be categorized into ability to recover from ma-
chine failure,1 expectation of homogeneous cluster, require-
ments for specialized hardware such as infiniband (?), ablity
to tolerate network delays.

High Performance Computing (HPC) type distributed
computing typically expect a homogeneous cluster with ad-
vanced hardware such as infiniband which allows for low

1 All distributed system could recover using check point restarts, however
here we we are commenting on systems which do not require a restart

latency direct memory access between machines and direct
memory copies without expensive serialization procedures.
For dealing with failures, these systems will typically de-
pend on checkpoint restarts which requires that the proba-
bility of failure between check points to be fairly small.

In contrast to HPC system, cloud based systems have typ-
ically are designed for commodity hardware with an expec-
tation that a single node will fail often. This has lead to the
development of data processing techniques such as map re-
duce 2.1 which are designed to track which computation has
been lost due to node failure and reschedule it with minimal
impact on the rest of the cluster.

2.1 Distributed Frameworks
Map-reduce (Dean and Ghemawat 2004; Zaharia et al. 2010)
is one of the most common distributed architectures used
in cloud computing for batch processing. It requires that all
computation be structure in a series of Map and Reduce op-
erations, where the Map operation takes an unit of data and
maps it to a key-value pair. The reduce operation then op-
erates on all values mapped to a single key. Multiple map
and reduce operations are usually stacked to perform more
complicated computations. The framework prevents arbi-
trary communication between independent mapping and re-
ducing elements in the cluster, however this enforced struc-
ture allows the system to easily restart lost computation us-
ing only knowledge of what key range was affected how to
reconstruct the required input data for those key’s tasks.

Map-reduce many also be further extended for process-
ing streams of data by batching events into small episodes
running each set of grouped events through the map reduce
pipeline.

Large scale data processing techniques have been con-
stantly improving with new custom built query and stream
execution engines which are custom build and can achieve
higher performance than generic map reduce frameworks.
(Melnik et al. 2010; Malewicz et al. 2010; Kulkarni et al.
2015)

In addition to clustering data based off computed keys,
there also exist frameworks such as Grappa (Nelson et al.
2015) which are designed specifically for targeting graph
processing applications by trying to avoid relocating ele-

ments of a graph since that will quickly lead to fragmenta-
tion and instead relocate small executable tasks when remote
memory operations are required.

2.2 Distributed Languages
In HPC environments is is more common to see custom built
languages such as Chapel (Chamberlain et al. 2007; Sanz
et al. 2012) or language extensions to C such as UPC (Dan
Bonachea, etc) which facilitate developing distributed com-
putations. These languages tend to use distributed Arrays
or other large objects are their primitives wrapping libraries
such as GASNet (Bonachea 2002) which provides abstrac-
tions over copying objects from remote machines and pass-
ing messages between machines in a cluster.

Most of these language extensions require that each dis-
tributed object contain special annotation or distribution
code attached to each object which controls how locality
and placement will be managed within a cluster. This has
the advantage in that programmers can be aware of all dis-
tributed operations that are taking place while still using
natural primitives such as array read and write operations.

2.3 Distributed JVMs
Java has a long history of people trying to develop dis-
tributed JVM (Aridor et al. 1999; Zhu et al. 2002; Miyamoto
and Liblit 1997). These platforms tend to work by creating a
new implementation of a Java virtual machine and may oper-
ate on page instead of object level. Some advantages of using
pages instead of object directly (like DJ) is that object which
are commonly used together might be located in a similar
place in memory due to be allocated at a similar point in time
and thus by moving a page these platforms may be acquiring
resources which will be accessed shortly thereafter.

2.4 Tracing JITs
The fundamental idea of a JIT is that it will identify some
block for which it can apply some optimization to while
allowing the rest of the program to continue executing on
a slower interpreter. As JITs mature they tend to be filled
with a number of specific optimizations for countless cases.
A fairly generic technique for building a first pass at a JITs
is to use tracing. Tracing has been successfully used by
a number of existing JITs such as Pypy for Python (Rigo
and Pedroni 2007), LuaJIT (Pall), and Tracermonkey for
Javascript (?). The way that tracing operates is that it first
identifies a loop that has already executed n times and we
expect that will execute at least another m times so that
the time spent compiling will pay off. The tracing JIT will
then create a trace which will collect any information we
need such as types of variables, how branches behaved, how
virtual method call sites dispatched etc. This information is
then feed into a compiler which is able to use this to create
a compiled version of this specific trace (specializing to the
types and branch directions observed etc) which fallbacks

into the interpreter in the case of assumption made by the
compiler is violated.

3. Motivation
Given the number current systems that currently exist and
will likely be written in the future, it would be helpful if
there was a unified platform which made developing these
distributed application easy. This Is why DJ supports having
a user supplied JIT which is able to manage how a program
should be distributed within a cluster. Additionally, there
currently exists a wide range of programs that are developed
for a single machine but many benefit from running on a
distributed cluster. In these cases it would be beneficial if
there was a way to avoid performing costly rewrites and use
JIT techniques to automatically identify how the program is
behaving and can be optimized for running in a distributed
environment.

4. Method
4.1 Distributed Objects
A core abstraction for DJ is remote objects and the ability
to relocate objects after they have been initially created.
Considering that objects are core to a JVM based language
it is important to make sure that non distributed objects
(the vast majority) continue to operate in a high preferment
manor.

All objects first receive two additional fields. The first be-
ing a mode field which allows for tasks to determine how an
object is suppose to behave using a simple bit masks check.
The second is a pointer to a distributed object manager which
used to track additional information about an object in the
case that it is operating in a distributed mode. These fields
are added to all objects since we are unable to realistically
change the size of existing objects without significant per-
formance impact later. For performing code rewrites, we use
the JVM’s debugging interface which allows for dynami-
cally reloading classes after the program has started. This
functions as the equivalent of replacing method pointers in
a vtable. There are some slight performance impacts for re-
placing class files after starting, the most obvious is that any
compiled code inside the JVM that depends on the replaced
class will become invalidated and will have to wait for a re-
compile.

4.2 Object Modes
Table 1 shows the potential modes that an object can be in.
This is controlled by the mode field that is present on every
object. The mode is local to a given cluster instance and
controls weather we are proxying read and write requests
(section 4.3) or converting method calls into RPC (section
4.5). There can only ever by one owner of an object at a point
in time, however the owner can be moved between machines
as controlled by the distributed JIT.

JVM (Hotspot) JVM (Hotspot) JVM (Hotspot) JVM (Hotspot)

Distributed Layer

JIT

Application

DataDataData
Data

I/O Layer Files
Sockets

Files
Sockets

Files
Sockets

Files
Sockets

Figure 1. Overview of the DJ architecture with the majority of the application running in a “distributed layer” which appears
unified between multiple Java virtual machines (JVM). The distributed JIT is running in the same distributed layer as the
application and thus able to directly interact with objects of the application and receive notifications about the applications
performance. (section 4.8) The I/O Layer represents wrappers for files/sockets/etc which are difficult to manage from an
abstracted distributed environment. (section 4.6) Red lines represent hypothetical pointers between objects and black lines
show which JVM owns a particular object (data).

JVM
1

JVM
2

Distributed Application

Data

Data Data
ID=10

Proxy
ID=10

Figure 2. Remote representations of objects

4.3 Redirected variable writes
One of the core features of DJ abstraction over a distributed
system is to allow for remote reads and write operations to
operate the same as local operations. We accomplish this by
performing automatic rewriting read and writes of class in-
stance variables. Ever read and write call site is automati-
cally replaced with a static method call as show in listings
1,2. This static method is trivially inlined by the JVM since
there is no ambiguity due to virtual method look ups and the
corresponding static method is below initial inlining thresh-
olds. Replacing all reads and writes with this static method
during the initial conversion allows us to at a later time eas-
ily replace all read and write operations on a class without

Mode Checked Intercepted
Operations Reads Writes Calls

No instances of
class distributed
(Default)

- - - -

Another instance of
class distributed

X - - -

Distributed (Owner) X - - ?
(Proxy) X X X ?

Caching (Owner) X - X ?
(Proxy) X - X ?

RPC (Owner) X ? ? -
(Proxy) X ? ? X

Table 1. Potential modes that an object can operate in. This
is transparently changed by the runtime as an object converts
from a local only object into distributed or RPC.

tracking and replacing all other classes which many directly
read and write public members on a class.

Once there exists one instance of an object that is dis-
tributed, we have to replace a classes such that it checks
whether or not it should perform remote read operations.
This is due to there being a single instances of a class’s code
and vtable. The replaced static method is similar to listing
4 which will check the mode flag present on an object and
if a specific operation requires performing additional opera-
tions and if so will call into a generic read or write handler
which will communicate to the owning machine to perform
the read or write.

Listing 1: Original code

a = 5;

Listing 2: Automatically rewritten to

ClassName.write_field_a(this , 5);

Listing 3: Corresponding static methods for not
distributed objects

static void write_field_a(
ClassName obj , int val) {

obj.a = val;
}

Listing 4: Static method once distributed

static void write_field_a(
ClassName obj , int val) {

if(obj.__dj_mode & REMOTE_WRITE) {
__dj_remote_write_I(obj , val ,

123 /* field uid */);
} else {
obj.a = val;

}
}

Figure 3. Representation of variable rewrite transforma-
tions using static methods that are easily inlined by the JVM.

4.3.1 Proxy objects
Proxy objects are the simplest types of distributed objects
available to a distributed JIT. These types of objects are au-
tomatically created via remote memory operations. They do
not contain a copy of any information and only the unique
identifier which serves as a distributed reference. Since these
objects are empty, this means that all operations performed
on them (reads and writes) will invoke remote memory op-
erations.

4.3.2 Caches on objects
For objects that are mostly read and sparsely written, it is
reasonable to activate caching on an object. This causes the
runtime to maintain a complete copy of all the objects fields.
This means that read operations are able to be performed
directly without being intercepted by the runtime, however

all write operations, even those performed by the owning
machine have to be intercepted so that to inform all cached
copies of a object that there was an update.

4.3.3 Distributed locks
One of Java’s primitives relating to objects is a monitor that
is attached to every object which can be activated through a
sychnromize block. These blocks when translated to byte-
code consist of a monitorenter and a monitorexit instruc-
tion which we are able to replace with a inlinable static
method call to our own custom implementation. Given the
versatility of Java’s locking constructs, we always acquire
the lock from the owning machine since performing any
sort of optimistic locking at our level of abstraction with re-
spect to code generation is difficult without additional sup-
port from lower level mechanisms.

4.3.4 Overhead for non distributed objects
While DJ does utilize class reloading mechanisms to selec-
tively enable and disable features of the distributed program,
there are a handful of limitations that prevent us from pro-
ducing a zero overhead abstraction.

The first and most noticeable impact is the addition of
two fields to all objects representing an 8 byte overhead.2

This is mainly due to the fact that we are unable to dynam-
ically change the size of types at runtime. This restriction
is imposed by the JVM and is reasonable considering that
resizing an objects would be fairly intense operation, com-
parable to a full GC to locate all instances of an object and
adjust pointers appropriately.

In addition to the overhead imposed by extra fields, we
also must be able to efficiently replace a number of opera-
tions normally performed by the Java programs. As such, all
reads and writes of fields, and monitor enter and exit have
been replace with static method calls. In the case that all in-
stances of a class are not distributed, then the static meth-
ods will simply perform the read and write operation di-
rectly on an object. Given the small size of these methods,
the JVM will usually directly inline these operations during
first passes of code generation. Since it is difficult in many
cases to check what type of object are being operated on with
a monitor enter and exit bytecode, we end up replacing all
instances of these instructions with our customized imple-
mentation. In the case that an object is not distributed it will
be able to directly perform the locking and unlocking oper-
ations using the unsafe3 interface to these operations. This
has the unfortunate side effect of preventing the JVMs extra
optimizations surrounding monitors on objects in all cases.

2 These fields are an 4 byte integer and a Java object pointer (assuming
compressed pointers of 4 bytes)
3 sun.misc.Unsafe

Listing 5: Remote Procedure call check

public RType method_name(
int arg1 , Type2 arg2) {

$args = new Object [] {arg1 , arg2};
if(ClsName._rpc_conf_method_name &&

__dj_check_rpc($args ,
ClsName._rpc_conf_method_name)

) {
return (RType)__dj_rpc_method(this ,

"method_name", $args);
}
// . . .

}

Figure 4. Additional check for RPC enabled methods.

4.4 Thread scheduling
Scheduling and placement of threads on creation is one of
the easiest ways that a distributed JIT is able to distribute
workloads within a cluster. First it is important to under-
stand that in Java, a threaded implementation will have to
contain all references that it will use within some pointer in
the thread’s class. This allows for DJ to determine all possi-
ble objects that a thread will start out referencing simply by
looking at all references inside the thread object. To inter-
cept the thread creation requests there are manually rewritten
implementations of java.lang.Thread other worker pools
such as java.util.concurrent.ForkJoinPool. There im-
plementations are designed to redirect requests for into the
runtime engine which then queries the distributed JIT for
where a thread should be placed.

4.5 Remote Procedure calls
While DJ is able to schedule threads and worker tasks dur-
ing their creation, we also would like to be able to migration
computation in the case that this is more efficient then mi-
grating any relevant data. Unfortunately, given that we are
operating on top an unmodified JVM, it is unpractical to mi-
grate existing threads efficiently.4 Instead, we provided the
ability for the system to dynamically set methods to behave
as an RPC method call. This is accomplished by the dis-
tributed JIT informing the runtime about which method it
believes should be an RPC method and which should be used
when to control the redirection.5 The runtime will then inject
a check into the top of the method similar to listing 5.

4 Projects such as Javaflow (jav) and Quasar (qua) provide potential solu-
tions to serializing threads in Java, however both have significant perfor-
mance impacts due to the need to track all stack variables.
5 All parameters to a given method may be spread through the cluster, so the
JIT is able to choose one parameter (or this) for which the machine that
owns the object will execute the method

4.6 I/O layer
Managing I/O transparently in a distributed system such as
DJ quickly adds a significant amount of overhead. This is
easy to see when considering cases such as networking sock-
ets. Suppose we have a system which simply opens net-
working sockets from what ever machine in the cluster is-
sues a request. In this case, requests from the same program
would appear to be coming from a wide number of IPs and
hosts within the cluster and potentially break the perception
that the application is running on a single host. Addition-
ally, the networking socket essentially becomes an unmov-
able resource6, which means that as the corresponding com-
putation and data is move throughout the cluster, we would
essentially have to forward all operations through what ever
machine owns this I/O resource.

To deal with this there exists special classes denoted as
managing I/O with a @DJIO annotation. Every constructor
must then contain a field to identify which machine in the
cluster will own a specific I/O object. These I/O classes are
then allowed to access full resources on the local machine
without any concern for the rest of the distributed cluster.
Data can be easily shuttled between the I/O objects and the
rest of the distributed application. Additionally, having the
I/O objects explicitly tied to a given machine allows the dis-
tributed JIT to be aware that some objects will be unmovable
and that co-locating computation near those unmovable ob-
jects may be advantageous. This separation allows for code
that is closely tied to the operation of a given I/O resource
to become fixed on the same machine that owns a resource
while allowing compute and data access oriented code to
flow between machiens in the cluster.

4.7 Garbage collection
In dealing with distributed objects, we have to consider how
to collect objects which are no longer being references by
the system. Garbage collection mechanism which require
searching the entire heap space for all references towards
an object become impracticable in a distributed system. This
is due to the number of messages that would be required
to identify when an object is still referenced by a remote
machine, and all the objects that are in turn referenced by
that object.

To counter this issue, we maintain a reference count of
the number of proxy instances of some object in a cluster.
Distributed objects are then tracked using Java’s reference
queue mechanisms which allow for receiving notifications
in the event that some object has been garbage collected on
a local machine.

This technique allows for a local machine to maintain as
many references to a single proxy instance without having
to update the referencing count while only performing refer-

6 Migrating network connections while open would require additional sup-
port from networking hardware and the operating system

ence counting updates in the case of creating and destroying
an object.

4.8 Distributed JIT
DJ runtime engine is able to interface with any distributed
JIT which implements the distributed JIT interface shown in
appendix A. The JIT ends up receiving notifications every-
time that there is a remote read or write operation or a RPC
method is activated. Additionally, it is queried when a thread
is being created and required to schedule queued work. Each
operation receives a self reference which is the object that
that is currently the subject of the remote read or write op-
eration. The JIT can then perform any action on this object
such as querying its class using java getClass method or
query for ownership information using the JIT commands
interface (appendix B). The JIT also recieves a StackRepre-
sentation object with events which represents where in the
program a remote operation was initiated from. StackRepre-
senation objects can then be further collected by a distributed
JIT to identify common places where optimizations could be
applied.

As show in figure 1 the distributed JIT is running in the
same program space as the distributed program. That means
the distributed JIT will end up receiving notifications about
its own remote access operations. While the JIT can make
use of distributed shared objects like the rest of the pro-
gram, the DJ runtime provides special annotations for ex-
plicitly controlling communication as performing unman-
aged remote communication within the JIT itself tends to
cause negative performance impacts for the rest of the pro-
gram.

5. JIT Methods
Given the generic abstraction for our distributed JIT, we
experimented with a handful of JIT policies.

5.1 NOP JIT
Our baseline JIT is a simple NOP JIT which performs no
optimizations and no data relocation. The implementation
of the JIT consists five empty methods which receive noti-
fications from the runtime and two methods with trivial im-
plementations for scheduling new threads and tasks in the
cluster. The performance of this method is fairly poor and
can be understood by looking at figure 5 where all read and
write operations require a network communication and when
running on a typical cloud network at latencies averaging 0.3
milliseconds the perform impacts quickly adds up.

5.2 Move on first access
Moving data based off its most recent access is a fairly com-
mon method and has seen use in previous distributed JVMs
(Aridor et al. 1999). The idea behind this method, is that
while the first access to an object will be slow, subsequent
access will have the data local and thus perform much faster

JVM 1 JVM 2

Ti
m
e

Network

Thread

Figure 5. Example run with no object or thread movement
from JIT. All objects on JVM 1 are “proxy” objects (section
4.3.1) which are dynamically created as they are first refer-
enced. Since they are proxy objects all remote read and write
operations result in network communication.

JVM 1 JVM 2

Ti
m
e

Network

Thread

Figure 6. A more intelligent JIT moving objects when they
are accessed as well as commonly accessed next objects.
Since both objects are most recently accessed from JVM 1,
the JIT has relocated these objects to prevent further network
communication.

accesses. This simple addition significantly improves perfor-
mance which is discussed further in section ??.

5.3 Move on first access and predict next access
In trying to perform JIT like optimizations, we will utilize
our knowledge about past memory access operations and or-
der to identify which objects are likely to be referenced next.
Using this information we are able to able to concurrently re-
quest multiple objects to be migrated and thus only suffer the
impact of a single network operation as show in figure 6. In
some cases this JIT is able to provide performance improve-
ments since it will reduce the amount of waiting time, how-
ever it tends to cause a higher variation in the request times
since objects end up being moved more frequently between
machines which can cause increased number of network op-

erations in maintaining the global state of where objects are
located.7

6. Experiments
Our experiments were run on the Google cloud computing
platform using a single availability zone. The network per-
formance is comparable to that of a typical cloud platform.
A simple ping test with no other network traffic has an aver-
age ping of 0.356 milliseconds and a maximal ping of 0.701
milliseconds. An rsync transfer of 3 GB files between two
instances had an average transfer rate of 129.92 MB/s.

Our programs were designed to simulate common cloud
computing operations. We simulate a distributed graph com-
putation operation by constructing a large tree object and
performing depth first searches. We also simulate a simple
web application using Jetty via the I/O Layer to receive
network requests and then communicate requests into the
distributed layer for handling the corresponding businesses
logic.

7. Results
It is important to understand that the DJ platform unlike typ-
ical JITs which focus on optimizing execution speed and in-
structions executed by the processor, it instead focuses on
memory access performed by the processor. For a program
running on a typical server8 a memory may take between 10
and 100 cycles depending on the availability of some mem-
ory in the cache. This same operation when performed re-
motely takes about 0.3 milliseconds due to the round trip
network communication time. This means that for a thread
to successfully execute at 50% speed of a single host, it
must successfully predict and perform locally about 900009

memory operations. Successfully predicting even a fraction
900000 memory operations ends up being severely difficult
except in the most trivial embarrassing parallel10. In practice
predicting this many memory operations successfully may
be impossible for a general program which is likely com-
prised of unpredictable hash table look ups, branches and
method dispatches.

7.1 Typical Concurrent code
DJ targets programs which have been written for a concur-
rent environment but on a single host. These types of pro-
grams may have code similar to listing 6 where Java’s syn-
chronize primitive is used to acquire a lock on some shared
map structure. This code may represent about a dozen read
and write operations in addition to the acquiring the lock,

7 Expand on this
8 Meaning no NUMA domains or infiniband accessible memory
9 Approximation based off the number of memory operation that a 3GHz
processor could perform in 0.3 milliseconds.
10 Meaning that the threads of the program do not perform any commu-
nication or use shared data structures, paralleling these programs can be
consider trivial

Listing 6: Realistic concurrent map lookup

Object res;
synchronize(map) {

res = map.get(id);
}

Figure 7. This is a simple concurrent map lookup operation
that one would expect to find in a typical Java program. A
potential case for code like this could be session lookup
within a webserver.

this means that the time spent in the critical section may be
on the order of hundreds of cycles. In directly converting this
block of code onto a distributed system, the lock operation
now becomes a distributed lock which will take on the order
of milliseconds to acquire in the non contended case. Addi-
tionally, if there is a remote memory operation inside of the
critical section due to a failure by the JIT or the JIT not yet
having enough samples to use to optimize, this can cause the
the time spent in the critical section to take multiple millisec-
onds which can cause the entire distributed system to stall.
Given the nature of JITs these types of failures are almost
guaranteed during early phases of the program.11

In this simplified case we might be able to use RPC
methods to avoid the overhead of a distributed lock and data
structure, however, that would limit the map to being present
only on a single machine. While solutions may exist in this
case there are many cases where one might be acquiring two
or more different locks owned by different machines within
the cluster, which means that the amount of time spent within
critical sections will significantly increase over the single
host case.

7.2 Distributed JIT development
While it is convent to think of the distributed JIT as a sin-
gle unit which is operating inside of the distributed program
space, this turns out to be a difficult view to take. The main
problem with this view is that any time that JIT code exe-
cuting on one machine wants to communication or access
the data of another it incurs the cost of a remote commu-
nication. Given that the JITs remote communication time is
the same as the program’s, this means that we must maintain
enough information locally to perform any memory move-
ment optimizations for an executing thread.12

11 Remember, JITs primarily work by recording how programs have be-
haved in past operations and using this information to perform informed
optimizations in the future.
12 The runtime engine provides a number of specialized annotations to
allow localization of variables and fine control over RPC and asynchronous
operations which are assist with building JITs.

7.3 Comments on Java
clean this section up

Building DJ on top of hotspot has a handful of advan-
tages such as being able to avoid dealing with low level code
generations, however there are a number of limitations. One
such limitation is how one manages memory and raw ob-
jects. If we were operating at C like level, then we would
be likely serialize objects using operations such as memory
copy to a networking buffer with some patching for pointers.
In the case of Java, in is impracticable to directly access the
layout of objects, instead we generate specialized serializa-
tion code which reads an object one field at a time writes it
into a ByteBuffer. For looking up objects, we are unable to
depend on the location of an object in memory since each
JVM maintains its own garbage collection and thus will mi-
grate objects as it pleases. This means that we must maintain
global object ID which require a lookup operation for each
access.

There are also a number of cases where objects will end
up bottoming out at some Unsafe operations such as updat-
ing a field atomically or other specialized code within the
Java runtime. In these cases we essentially have to manually
rewrite how these objects should behave inside a distributed
system which amounts redeveloping a large amount of the
Java runtime.

8. Conclusion
clean

Given the gap in performance between memory accesses
on a single host when compared to a multihost environment,
it is unclear if the level of rewriting mechanisms present
within DJ is sufficient to accomplish an acceptable program
transform. Additionally, given how concurrent Java code is
written as discussed in section 7.1, it is unlikely that the level
of rewrites required to optimize general cases falls within the
realm of current JIT technology. Still more work is required
to comment on if DJ works as a sufficient platform for
prototyping and building new types of distributed systems.

References
Apache Commons - Javaflow. URL http://commons.apache.

org/sandbox/commons-javaflow/.

Parallel Universe - Quasar. URL http : / / docs .
paralleluniverse.co/quasar/.

Y. Aridor, M. Factor, and A. Teperman. cjvm: a single system
image of a jvm on a cluster. In Parallel Processing, 1999.
Proceedings. 1999 International Conference on, pages 4–11,
1999.

D. Bonachea. Gasnet specification, v1.1. Technical report, Berke-
ley, CA, USA, 2002.

B. Chamberlain, D. Callahan, and H. Zima. Parallel programma-
bility and the chapel language. Int. J. High Perform. Com-
put. Appl., 21(3):291–312, Aug. 2007. ISSN 1094-3420. doi:

10.1177/1094342007078442. URL http://dx.doi.org/10.
1177/1094342007078442.

Dan Bonachea, etc. Berkeley Unified Parallel C (UPC) Project.

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing
on large clusters. In Proceedings of the 6th Conference on
Symposium on Opearting Systems Design & Implementation -
Volume 6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004.
USENIX Association. URL http://dl.acm.org/citation.
cfm?id=1251254.1251264.

S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mit-
tal, J. M. Patel, K. Ramasamy, and S. Taneja. Twitter heron:
Stream processing at scale. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’15, pages 239–250, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-2758-9.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for large-scale
graph processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’10, pages 135–146, New York, NY, USA, 2010. ACM. ISBN
978-1-4503-0032-2.

S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive analysis of
web-scale datasets. In Proc. of the 36th Int’l Conf on Very Large
Data Bases, pages 330–339, 2010.

C. Miyamoto and B. Liblit. Themis: Enforcing Titanium Consis-
tency on the NOW. http://www.cs.berkeley.edu/∼liblit/
themis/, Dec. 1997. CS262 semester project report.

J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and
M. Oskin. Latency-tolerant software distributed shared mem-
ory. In 2015 USENIX Annual Technical Conference (USENIX
ATC 15), pages 291–305, Santa Clara, CA, July 2015. USENIX
Association. ISBN 978-1-931971-225. URL https://
www.usenix.org/conference/atc15/technical-session/
presentation/nelson.

M. Pall. The LuaJIT Project. URL http://luajit.org/.

A. Rigo and S. Pedroni. JIT compiler architecture. Technical
Report D08.2, PyPy, May 2007. URL http://codespeak.
net/pypy/dist/pypy/doc/index-report.html.

A. Sanz, R. Asenjo, J. Lopez, R. Larrosa, A. Navarro, V. Litvinov,
S.-E. Choi, and B. Chamberlain. Global data re-allocation via
communication aggregation in chapel. In Computer Architecture
and High Performance Computing (SBAC-PAD), 2012 IEEE
24th International Symposium on, pages 235–242, Oct 2012.
doi: 10.1109/SBAC-PAD.2012.18.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica. Spark: Cluster computing with working sets. In Proceedings
of the 2Nd USENIX Conference on Hot Topics in Cloud Com-
puting, HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010.
USENIX Association. URL http://dl.acm.org/citation.
cfm?id=1863103.1863113.

W. Zhu, C.-L. Wang, and F. Lau. Jessica2: a distributed java virtual
machine with transparent thread migration support. In Cluster
Computing, 2002. Proceedings. 2002 IEEE International Con-
ference on, pages 381–388, 2002.

A. Distributed JIT interface
Listing 7: Distributed JIT interface

public interface JITInterface {

// Constructor is call on the main node before the main method is called

// a new client has been created
// this is called on the main node
// the id can be used with the distributed running to run some
// code on a targeted machine
void newClient(int id);

// These are called on the machine that invoked the remote operation
// the self object can be inspected to see what state this object is now in
// eg where it is located , or attempt to find out what else it references
void recordRemoteRead(Object self , int from_machine , int to_machine ,

int field_id , StackRepresentation stack);

void recordRemoteWrite(Object self , int from_machine , int to_machine ,
int field_id , StackRepresentation stack);

void recordRemoteRPC(Object self , int from_machine , int to_machine ,
StackRepresentation stack);

// these are recorded on the machine that currently owns the object self ,
// this will make some policies easier to implement such as always move
// an object to the machine that performed the last read
void recordReceiveRemoteRead(Object self , int from_machine ,

int to_machine , int field_id);

void recordReceiveRemoteWrite(Object self , int from_machine ,
int to_machine , int field_id);

// called during Thread.start from the machine that is starting the thread
// self is the runnable object that was passed to the thread to start
// a trivial implementation would just return from_machine
int placeThread(Object self , int from_machine , StackRepresentation stack);

// when something submits work into a work queue like system
// eg using .par on a scala collection
void scheduleQueuedWork(Object self , int from_machine ,

StackRepresentation stack);
}

B. Distributed JIT operations
Listing 8: Distributed JIT Commands

public class JITCommands {
static public int getObjectLocation(Object self);

// move the ownership of some object to a target machine
static public void moveObject(Object self , int target);

// use a field reference to determine where to move an object
static public void moveObjectFieldRef(Object from , int field , int target);

// make a read only cache of some object on target machine
static public void cacheObject(Object self , int target);

static public void removeCacheObject(Object self , int target);

// send a command to the runtime to rewrite a method to have the RPC header
// and reload the class with the new code
static public void makeMethodRPC(String clsname , String methodSignature ,

int argumentPosition);

// identify what the current configuration is on a given method that has
// rpc enabled , eg the argumentPos value
static public int lookupMethodRPC(String clsname , String methodSignature);

// when the system get some work submitted to something like a ForkJoinPool
// it is the job of jit to schedule when the jobs should actually be run
static public void runQueuedWork(Object self , int target);

static public Object lookupObject(byte[] identifier);
}

