
Evaluation of Logic Programs with Built-Ins and
Aggregation: A Calculus for Bag Relations

Matthew Francis-Landau[0000−0002−4139−1111], Tim Vieira[0000−0002−2043−1073],
and Jason Eisner[0000−0002−8861−0772]

Johns Hopkins University, Baltimore, MD 21218 USA
{mfl,timv,jason}@cs.jhu.edu

Abstract. We present a scheme for translating logic programs with
built-ins and aggregation into algebraic expressions that denote bag re-
lations over ground terms of the Herbrand universe. To evaluate queries
against these relations, we develop an operational semantics based on
term rewriting of the algebraic expressions. This approach can exploit
arithmetic identities and recovers a range of useful strategies, including
lazy strategies that defer work until it becomes both possible and neces-
sary. Code is available at https://github.com/matthewfl/dyna-R.

Keywords: Logic Programming, Relational Algebra, Rewriting Systems

1 Introduction

We are interested in developing execution strategies for deductive databases
whose defining rules make use of aggregation, recursion, and arithmetic. Lan-
guages for specifying such deductive databases are expressive enough that it can
be challenging to answer queries against a given database. Term rewriting sys-
tems are an attractive approach because they can start with the query-database
pair itself as an intensional description of the answer, and then attempt to re-
arrange it into a more useful extensional description such as a relational table.
We will give a notation for algebraically constructing potentially infinite bag re-
lations from constants and built-in relations by unions, joins, projection, aggre-
gation, and recursion. We show how programs in existing declarative languages
such as Datalog, pure Prolog, and Dyna can be converted into this notation.

We will then sketch a term rewriting system for simplifying these algebraic
expressions, which can in principle be used to answer queries against a bag
relation. Term rewriting naturally handles materialization, delayed constraints,
constraint propagation, short-circuit evaluation, lazy iteration, and enumerative
strategies such as nested-iterator join.

There remains a practical challenge (which is beyond the scope of this pa-
per): determining which rewrites to apply and when, much as in automated
theorem proving. Our current implementation is essentially a priority rewrite

https://github.com/matthewfl/dyna-R

2 M. Francis-Landau et al.

system with heuristic priorities and memoization.1 While an improved execution
engine is work in progress, our design includes fair (breadth-first) nondetermin-
istic search, polyvariant specialization through generating new rewrite rules and
programmable reduction strategies, static analysis by abstract interpretation,
and guess-check-update strategies to solve recursive systems of constraints.

1.1 Approach

Dyna [4] is a generalization of Datalog [1,7] and pure Prolog [3,2]. Our methods
apply to all three of these logic programming languages (and more trivially to
languages like SQL that can be written in standard relational algebra).

We are given a Herbrand universe G of ground terms. A Dyna program serves
to define a partial map from G to G, which may be regarded as a set of key-value
pairs. Datalog and Prolog are similar, but they can map a key only to true, so
the program serves only to define the set of keys.

Given a program, a user may query the value of a specific key (ground term).
More generally, a user may use a non-ground term to query the values of all keys
that match it, so that the answer is itself a set of key-value pairs.

A set of key-value pairs—either a program or the answer to a query—may
be interpreted as a relation on two G-valued variables. Our method in this paper
will be to describe the desired relation algebraically, building up the description
from simpler relations using a relational algebra. These simpler relations can be
over any number of variables; they may or may not have functional dependencies
as the final key-value relation does; and they may be bag relations, i.e., a given
tuple may appear in the relation more than once, or even infinitely many times.
Given this description of the desired relation, we will use rewrite rules to simplify
it into a form that is more useful to the user. Although we use a term rewrit-
ing system, we refer to the descriptions being rewritten as R-exprs (relational
expressions) to avoid confusion with the terms of the object language, Dyna.

1.2 Dyna Examples

To illustrate the task, we first briefly give a couple of examples (adapted from
[9]) of useful Dyna programs and queries against them. In §4, we will sketch how
to translate Dyna programs into our algebra.

First, we start with a canonical Datalog program written in standard Dyna
notation to compute the shortest path in a graph. Additional rules not shown
here define the values of start and the various edge terms.

1 path(start) min= 0.
2 path(Sink) min= path(Source) + edge(Source, Sink).

1 This is already more flexible than Prolog’s SLD resolution, which confines its at-
tention at any time to a specific subgoal term and will crash with an “instantiation
fault” if that subgoal cannot be rewritten.

A Calculus for Bag Relations 3

This program defines a map with keys such as edge("albany", "buffalo"), whose
value is the distance from Albany to Buffalo, and keys such as path("chicago"),
whose value is the total length of the shortest path from start to Chicago.

The second rule implies that the value of path("chicago") is the minimum
value achieved by path(Source) + edge(Source, "chicago") for any instantiation
of the variable Source. If there are no instantiations of Source such that path(Source)
and edge(Source, "chicago") both have values, then path("chicago") is not a key
in the database at all, meaning that Chicago is not reachable at all from start.2

How is this database used? A user who is located at start might query
path("chicago") to find out how far away it is, or they might query path(Y) to
find all reachable cities Y along with how far away they are. Other queries would
return other objects in the database, such as edges.

In the above example, Sink and Source may range over only a finite set of
cities. However, we can easily encounter cases that define infinite relations, as in
the following program that runs a simple convolutional neural network:

3 σ(X) = 1/(1+exp(-X)). % define sigmoid function
4 out(J) = σ(in(J)). % apply sigmoid function
5 in(J) += out(I) * edge(I,J). % vector-matrix product
6 in(input(X,Y)) += pixel_brightness(X,Y) % external input
7 loss += (out(J) - target(J))**2. % L2 loss of the predictions
8 edge(input(X,Y),hidden(X+DX,Y+DY)) = weight_conv(DX,DY). % layer 1
9 edge(hidden(X,Y),output(Z)) = weight_output(X,Y,Z). % layer 2

10 weight_output(X,Y,Z) := random(*,-1,1). % init with random
11 weight_conv(DX,DY) := random(*,-1,1) for DX:-4..4, DY:-4..4.

Without giving a detailed exposition of this program, we point out that it
again has edge keys, which specify the weighted edges of a neural network. This
time, however, the rules that specify such edges define infinitely many of them,
in a convolutional structure on an infinite set of neurons.

As a result, a query edge(I,J) must return a description of an infinite set of
edges. Even so, only finitely many of these edges contribute to the value of loss,
provided that the input image specifies pixel_brightness(X,Y) at only finitely
many (X,Y) coordinates, and the loss function specifies target values for only
finitely many neurons. As a result, a clever system will be able to answer a query
for loss in finite time, essentially by finding the paths between the pixels and the
targets (which requires addition/subtraction of DX and DY) and by determining
which of the infinitely many keys σ(X) need to compute their values in order to
find the out activations of the neurons on these paths.

A version of this program indeed runs in our present implementation, al-
though there is not space here to work through such a detailed example. Broadly
speaking, the implementation unrolls the definition of loss until it is possible to
apply rewrites that can make progress on simplifying the definition, for example,
by performing arithmetic on known quantities.

2 Unless "chicago" happens to be the value of the start key, in which case the first
rule comes into play as well. In this case 0 is included in the minimum, so Chicago
is always reachable with total distance of at most 0.

4 M. Francis-Landau et al.

2 Syntax and Semantics of R-exprs

Let G be the Herbrand universe of ground terms built from a given set F
of ranked functors. We treat constants (including numeric constants) as 0-ary
functors. Let M = N ∪ {∞} be the set of multiplicities. A simple definition
of a bag relation [8] would be a map Gn →M for some n. Such a map would
assign a multiplicity to each possible ordered n-tuple of ground terms. However,
we will use names rather than positions to distinguish the roles of the n objects
being related: in our scheme, the n tuple elements will be named by variables.

Let V be a distinguished set of variables. An environment E : V 7→ G is a
partial function from variables V to ground terms.

Below, we will inductively define the set R of R-exprs. The reader may turn
ahead to later sections to see some examples. Each R-expr R has a finite set of
free variables vars(R) ⊆ V, namely the variables that appear in R in positions
where they are not bound by an operator such as proj or sum. The idea is for R

to specify a bag relation over domain G, with columns named by vars(R).
We will also inductively define the semantic interpretation function J·KE ,

which assigns a multiplicity JRKE to any R-expr R such that vars(R) ⊆ domain(E).
For any U ⊆ V, the environments with domain U are just the possible tuples

over G whose elements are named by U . If vars(R) ⊆ U , we can dually regard R

as inducing a function E 7→ JRKE from these tuples to multiplicities. This is the
sense in which R specifies a bag relation. More precisely, for each U , R specifies
a version of the relation whose column names are U but where R constrains only
the columns vars(R). The other columns can take any values in G. A tuple’s mul-
tiplicity never depends on its values in those other columns, since our definition
of J·KE will ensure that JRKE depends only on the restriction of E to vars(R).)

We say that T is a term if T ∈ V or T = f(T1, . . . , Tn) where f ∈ F has rank n
and T1, . . . , Tn are also terms. Terms typically appear in the object language (e.g.,
Dyna) as well as in our meta-language (R-exprs). Let T ⊇ G be the set of terms.
Let vars(T) be the set of vars appearing in T, and extend E in the natural way over
terms T for which vars(T) ⊆ domain(E): E(f(T1, . . . , Tn)) = f(E(T1), . . . , E(Tn)).

We now define JRKE for each type of R-expr R, thus also presenting the different
types of R-exprs. First, we have equality constraints between non-ground
terms, which are true in an environment that grounds those terms to be equal.
True is represented by multiplicity 1, and false by multiplicity 0.

1. JT=UKE = if E(T) = E(U) then 1 else 0, where T, U ∈ T

We also have built-in constraints, such as

2. Jplus(I,J,K)KE = if E(I) + E(J) = E(K) then 1 else 0, where I, J, K ∈ T
(use this constraint only in type-safe environments: E(I), E(J), E(K) ∈ R)

The above R-exprs are said to be constraints because they always have multi-
plicity 1 or 0 in any environment. Taking the union of R-exprs via + may yield
larger multiplicities:

3. JR+SKE = JRKE + JSKE , where R, S ∈ R

A Calculus for Bag Relations 5

The R-expr 0 denotes the empty bag relation, and more generally, M ∈M denotes
the bag relation that contains M copies of the empty tuple:

4. JMKE = M, where M ∈M

When we join two bag relations, we must use multiplication * to combine their
multiplicities [8]:

5. JR*SKE = JRKE · JSKE , where R, S ∈ R

We can regard both R and S as bag relations over columns U = vars(R)∪vars(S) =
vars(R+S) = vars(R*S). The names intersect, join (or equijoin), and Carte-
sian product are conventionally used for the cases of R*S where (respectively)
vars(R) = vars(S), |vars(R)∩vars(S)| = 1, and |vars(R)∩vars(S)| = 0. As a special
case of cross product, notice that R*3 denotes the same bag relation as R+R+R.

We next define projection, which removes a column X from a bag rela-
tion, summing the multiplicities of rows that have thus become equal. When we
translate a logic program into an R-expr (§4), we will generally apply projection
operators to each rule to eliminate its local variables.

6. Jproj(X,R)KE =
∑

x∈G JRKE[X=x]

where X ∈ V, R ∈ R, and where E[X = x] means a version of E that has been
modified to set E(X) = x

Projection collapses each group of rows that are identical except for their
value of X. Summation does the same, but instead of adding up the multiplicities
of the rows in each possibly empty group, it adds up their X values to get a Y

value for the new row, which has multiplicity 1. Thus, it removes column X but
introduces a new column Y. The summation operator is defined as follows (note
that sum /∈ F):

7. JA=sum(X,R)KE = if E(A) =
∑

x∈G x ∗ JRKE[X=x] then 1 else 0
where A, X ∈ V, R ∈ R, and the ∗ in the summand means that we sum up
JRKE[X=x] copies of the value x. If there are no summands, the result of the∑
· · · is defined to be the identity element idsum.

Notice that an R-expr of this form is a constraint. sum is just one type of ag-
gregation operator, based on the binary + operation and its identity element
idsum= 0. In exactly the same way, one may define other aggregation operators
such as min, based on the binarymin operation and its identity element idmin=∞.
Variants of these will be used in §4 to implement the aggregations in += and min=

rules like those in §1.2.
In projections proj(X,R) and aggregations such as sum(X,R) and min(X,R), we

say that occurrences of X within R are bound by the projection or aggregation
operator,3 so that they are not in the vars of the resulting R-expr. However, the
most basic aggregation operator does not need to bind a variable:

8. JM=count(R)KE = if E(M) = JRKE then 1 else 0

3 But notice that sum(X,R) does not correspond to
∑

X · · · but rather to
∑

row∈R row[X].

6 M. Francis-Landau et al.

In effect, M=count(R) is a version of R that changes every tuple’s multiplicity to
1 but records its original multiplicity in a new column M. It is equivalent to
M=sum(N,(N=1)*R) (where N /∈ vars(R)), but we define it separately here so that it
can later serve as an intermediate form in the operational semantics.

Finally, it is convenient to augment the built-in constraint types with user-
defined relation types. Choose a new functor of rank n that is /∈ F , such as f,
and choose some R-expr Rf with vars(Rf) ⊆ {X1, . . . , Xn} (which are n distinct
variables) to serve as the definition (macro expansion) of f. Now define
9. Jf(T1, . . . , Tn)KE = JRf{X1 7→ T1, . . . , Xn 7→ Tn}KE where T1, . . . , Tn ∈ T ∪R

The {7→} notation denotes substitution for variables, where bound variables
of Rf are renamed to avoid capturing free variables of the Ti.

With user-defined relation types, it is possible for a user to write R-exprs that
are circularly defined in terms of themselves or one another (similarly to a let
rec construction in functional languages). Indeed, a Dyna program normally
does this. In this case, the definition of J·KE is no longer a well-founded induc-
tive definition. Nonetheless, we can still interpret the J· · ·KE = · · · equations in
the numbered points above as constraints on J·KE , and attempt to solve for a
semantic interpretation function J·KE that satisfies these constraints [4]. Some
circularly defined R-exprs are constructed so as to have unique solutions, but
this is not the case in general.

3 Rewrite Rules

Where the previous section gave a denotational semantics for R-exprs, we now
sketch an operational semantics. The basic idea is that we can use rewrite rules
to simplify an R-expr until it is either a finite materialized relation—a list of
tuples—or has some other convenient form. All of our rewrite rules are semantics-
preserving, but some may be more helpful than others. For some R-exprs that
involve infinite bag relations, there may be no way to eliminate all built-in con-
straints or aggregation operations. The reduced form then includes delayed con-
straints (just as in constraint logic programming) or delayed aggregators. Even
so, conjoining this reduced form with a query can permit further simplification;
therefore, some queries may still yield simple answers.

3.1 Finite Materialized Relations

We may express the finite bag relation shown at left by a simple sum-of-
products R-expr, shown at the right. In this example, the ground values being
related are integers.

g =

X1 X2
1 1
2 6
2 7
2 7
5 7

to R-expr
=====⇒ Rg =

((X1 = 1) ∗ (X2 = 1)
+ (X1 = 2) ∗ (X2 = 6)
+ (X1 = 2) ∗ (X2 = 7)
+ (X1 = 2) ∗ (X2 = 7)
+ (X1 = 5) ∗ (X2 = 7))

(1)

A Calculus for Bag Relations 7

We see that each individual row of the table (tuple) translates into a product (∗)
of several (Variable = value) expressions, where the variable is the column’s
name and the value is the cell in the table. To encode multiple rows, the R-expr
simply adds the R-exprs for the individual rows. When evaluated in a given
environment, the R-expr is a sum of products of multiplicities. But abstracting
over possible environments, it represents a union of Cartesian products of 1-
tuples, yielding a bag relation.

We may use this R-expr as the basis of a new user-defined R-expr type g

(case 9 of §2) by taking its definition Rg to be this R-expr. Our R-exprs can
now include constraints such as g(A,B) or g(A,7). When adding a new case in
the denotational semantics in this way, we always match it in the operational
semantics by introducing a corresponding rewrite rule g(X1, X2)→ Rg.

A sum-of-products R-expr simply enumerates the tuples of a bag relation,
precisely as a boolean expression in disjunctive normal form (that is, an “or-of-
ands” expression) enumerates the satisfying assignments. Just as in the boolean
case, a disjunct does not have to constrain every variable: it may have “don’t
care” elements. For example, (A=1)*(B=1) + (A=2) describes an infinite relation
because the second disjunct A=2 is true for any value of B.

3.2 Equality Constraints and Multiplicity Arithmetic

We may wish to query whether the relation g in the above section relates 2 to
7. Indeed it does—and twice. We may discover this by considering g(2,7), which
rewrites immediately via substitution to an R-expr that has no variables at all
((2=1)*(7=1)+ · · ·), and finding that this further reduces to the multiplicity 2.

How does this reduction work? First, we need to know how to evaluate the
equality constraints: we need to rewrite 2=1 → 0 but 2=2 → 1. The necessary
rewrite rules are special cases of the following structural unification rules:
(f(U1,. . .,Un)=g(V1,. . .,Vm)) → 0 if f, g ∈ F and (f, n) 6= (g,m) .functor clash
(f(U1,. . .,Vn)=f(V1,. . .,Vn)) → (U1=V1) * · · · * (Un=Vn) if f ∈ F and n ≥ 0
(T=X) → (X=T) if X∈ V and T∈ T .put var on left to match rules below
(X=X) → 1 .true for every value of X
(X=T) → 0 if X∈ V and T∈ T and V∈ vars(T) .not true for any X (occurs check)
We now have an arithmetic expression, which we can simplify to the multiplicity
2 via rewrites that implement basic arithmetic on multiplicitiesM:
M + N → L if M,N ∈M and M+N=L; M * N → L if M,N ∈M and M∗N=L

Above, we relied on the definition of the new relation type g, which allowed
us to request a specialization of Rg. Do we need to make such a definition in
order to query a given bag relation? No: we may do so by conjoining the R-expr
with additional constraints. For example, to get the multiplicity of the pair (2, 7)
in Rg, we may write Rg*(X1=2)*(X2=7). This filters the original relation to just
the pairs that match (2, 7), and simplifies to 2*(X1=2)*(X2=7). To accomplish this
simplification, we need to use the following crucial rewrite:
(X=T)*R → (X=T)*R{X 7→ T} if X ∈ V and T ∈ T .equality propagation
As a more interesting example, the reader may consider simplifying the query
Rg*lessthan(X2,7), which uses a built-in inequality constraint (see §3.4).

8 M. Francis-Landau et al.

3.3 Joining Relations

Analogous to eq. (1), we define a second tabular relation f with a rewrite rule
f(X1, X2)→ Rf.

f =

X1 X2
1 2
3 4

 to R-expr
=====⇒ Rf =

(X1 = 1) ∗ (X2 = 2)
+ (X1 = 3) ∗ (X2 = 4)

(2)

We can now consider simplifying the R-expr f(I,J) * g(J,K), which the reader
may recognize as an equijoin on f ’s second column and g’s first column.4 Notice
that the R-expr has renamed these columns to its own free variables (I, J, K).
Reusing the variable J in each factor is what gives rise to the join on the relevant
column. (Compare f(I,J) * g(J’,K), which does not share the variable and so
gives the Cartesian product of the f and g relations.)

We can “materialize” the equijoin by reducing it to a sum-of-products form
as before, if we wish: (I=1)*(J=2)*(K=6) + 2*(I=1)*(J=2)*(K=7)

To carry out such simplifications, we use the fact that multiplicities form a
commutative semiring under + and *. Since any R-expr evaluates to a multiplicity,
these rewrites can be used to rearrange unions and joins of R-exprs Q, R, S ∈ R:
1 * R ↔ R .multiplicative identity
0 * R ↔ 0 .multiplicative annihilation
0 + R ↔ R .additive identity
∞ * R → ∞ if R ∈M and R > 0 .absorbing element
∞ + R → ∞ .absorbing element
R + S ↔ S + R; R * S ↔ S * R .commutativity
Q + (R + S) ↔ (Q + R) + S; Q * (R * S) ↔ (Q * R) * S .associativity
Q * (R + S) ↔ Q * R + Q * S .distributivity
R * M → R + (R * N) if M,N ∈M and (1+N → M) .implicitly does M → 1+N
R ↔ R * R if R is a constraint .as defined in §2

We can apply some of these rules to simplify our example as follows:
f(I,J)*g(J,K)
→ ((I=1)*(J=2)+(I=3)*(J=4)) * g(J,K) .eq. (2)
→ (I=1)*(J=2)*g(J,K) + (I=3)*(J=4)*g(J,K) .distributivity
→ (I=1)*(J=2)*g(2,K) + (I=3)*(J=4)*g(4,K) .equality propagation
→ (I=1)*(J=2)*((K=6)+(K=7)*2) + (I=3)*(J=4)*0 .via eq. (1)
→ (I=1)*(J=2)*((K=6)+(K=7)*2) .annihilation
→ (I=1)*(J=2)*(K=6) + (I=1)*(J=2)*(K=7)*2 .distributivity

Notice that the factored intermediate form (I=1)*(J=2)*((K=6)*1 + (K=7)*2) is
more compact than the final sum of products, and may be preferable in some
settings. In fact, it is an example of a trie representation of a bag relation. Like
the root node of a trie, the expression partitions the bag of (I,J,K) tuples into dis-
juncts according to the value of I. Each possible value of I (in this case only I=1)
is multiplied by a trie representation of the bag of (J,K) tuples that can co-occur

4 This notation may be familiar from Datalog, except that we are writing the con-
junction operation as * rather than with a comma, to emphasize the fact that we
are multiplying multiplicities rather than merely conjoining booleans.

A Calculus for Bag Relations 9

with this I. That representation is a sum over possible values of J (in this case
only J=2), which recurses again to a sum over possible values of K (K=6 and K=7).
Finally, the multiplicities 1 and 2 are found at the leaves. A trie-shaped R-expr
generally has a smaller branching factor than a sum-of-products R-expr. As a
result, it is comparatively fast to query it for all tuples that strongly restrict I or
(I,J) or (I,J,K), by narrowing down to the matching summand(s) at each node.
For example, multiplying our example trie by the query I=5 gives an R-expr that
can be immediately simplified to 0, as the single disjunct (for I=1) does not match.

That example query also provides an occasion for a larger point. This trie
simplification has the form (I=5)*(I=1)*R, an expression that in general may be
simplified to 0 on the basis of the first two factors, without spending any work
on simplifying the possibly large expression R. This is an example of short-
circuiting evaluation—the same logic that allows a SAT solver or Prolog solver
to backtrack immediately upon detecting a contradiction.

3.4 Rewrite Rules for Built-In Constraints

Built-in constraints are an important ingredient in constructing infinite relations.
While they are not the only method,5 they have the advantage that libraries of
built-in constraints such as plus(I,J,K) (case 2 of §2) usually come with rewrite
rules for reasoning about these constraints [6]. Some of the rewrite rules invoke
opaque procedural code.

Recall that the arguments to a plus constraint are terms, typically either
variables or numeric constants. Not all plus constraints can be rewritten, but a
library should provide at least the following cases:
plus(I,J,K) → I(I+ J = K)︸ ︷︷ ︸

∈{0,1}

if I, J, K ∈ R

plus(I,J,X) → (X=I+ J) if I, J ∈ R and X ∈ V
plus(I,X,K) → (X=K− I) if I, K ∈ R and X ∈ V
plus(X,J,K) → (X=K− J︸ ︷︷ ︸

∈R

) if J, K ∈ R and X ∈ V

The R-expr R = proj(J,plus(I,3,J)*plus(J,4,K)) represents the infinite set of
(I, K) pairs such that K = (I+3)+4 arithmetically. (The intermediate temporary
variable J is projected out.) The rewrite rules already presented (plus a rewrite
rule from §3.5 below to eliminate proj) suffice to obtain a satisfactory answer to
the query I=2 or K=9, by reducing either (I=2)*R or R*(K=9) to (I=2)*(K=9).

On the other hand, if we wish to reduce R itself, the above rules do not apply.
In the jargon, the two plus constraints within R remain as delayed constraints,
which cannot do any work until more of their variable arguments are replaced
by constants (e.g., due to equality propagation from a query, as above).

We can do better in this case with a library of additional rewrite rules that
implement standard axioms of arithmetic [6], in particular the associative law.
With these, R reduces to plus(I,7,K), which is a simpler description of this infi-
nite relation. Such rewrite rules are known as constraint propagators. Other
5 Others are structural equality constraints and recursive user-defined constraints.

10 M. Francis-Landau et al.

useful examples concerning plus include plus(0,J,K) → K=J and plus(I,J,J)

→ (I=0), since unlike the rules at the start of this section, they can make
progress even on a single plus constraint whose arguments include more than
one variable. Similarly, some useful constraint propagators for the lessthan rela-
tion include lessthan(J,J)→ 0; the transitivity rule lessthan(I,J)*lessthan(J,K)

→ lessthan(I,J)*lessthan(J,K)*lessthan(I,K); and lessthan(0,I)*plus(I,J,K)→
lessthan(0,I)*plus(I,J,K)*lessthan(J,K). The integer domain can be split by
rules such as int(I) → int(I)*(lessthan(0,I)+lessthan(I,1)) in order to allow
case analysis of, for example, int(I)*myconstraint(I). All of these rules apply
even if their arguments are variables, so they can apply early in a reduction
before other rewrites have determined the values of those variables. Indeed, they
can sometimes short-circuit the work of determining those values.

Like all rewrites, built-in rewrites R → S must not change the denotation of
R: they ensure JRKE=JSKE for all E. For example, lessthan(X,Y)*lessthan(Y,X)
→∗ 0 is semantics-preserving because both forms denote the empty bag relation.

3.5 Projection

Projection is implemented using the following rewrite rules. The first two rules
make it possible to push the proj(X,...) operator down through the sums and
products of R, so that it applies to smaller subexpressions that mention X:
proj(X,R+S) ↔ proj(X,R) + proj(X,S) .distributivity over +
proj(X,R*S) ↔ R*proj(X,S) if X /∈ vars(R) .see also the R*∞ rule below

Using the following rewrite rules, we can then eliminate the projection operator
from smaller expressions whose projection is easy to compute. (In other cases, it
must remain as a delayed operator.) How are these rules justified? Observe that
proj(X,R) in an environment E denotes the number of X values that are consistent
with E’s binding of R’s other free variables. Thus, we may safely rewrite it as
another expression that always achieves the same denotation.
proj(X,(X=T)) → 1 if T ∈ T and T does not contain X .occurs check
proj(A,(A=sum(X,R))) → 1 if A /∈ vars(R) .cardinality of an aggregated variable
proj(X,R) → R*∞ if X /∈ vars(R) .cardinality of an unconstrained variable
proj(X,bool(X)) → 2 .cardinality of a variable given a certain unary constraint
proj(X,int(X)) → ∞ .cardinality of a variable given a certain unary constraint
proj(X,proj(Y,nand(X,Y))) → 3 .card. of a pair given a certain binary constraint

As a simple example, let us project column K out of the table g(J,K) from eq. (1).

proj(K, g(J,K))→

proj(K,((J=1) * (K=1)
+ (J=2) * (K=6)
+ (J=2) * (K=7)
+ (J=2) * (K=7)
+ (J=5) * (K=7)))

→

((J=1) * proj(K, (K=1))
+ (J=2) * proj(K, (K=6))
+ (J=2) * proj(K, (K=7))
+ (J=2) * proj(K, (K=7))
+ (J=5) * proj(K, (K=7)))

→ (J=1) + (J=2)*3 + (J=5)

When multiple projection operators are used, we may push them down in-
dependently of each other, since they commute:
proj(X, proj(Y, R)) → proj(Y, proj(X, R))

A Calculus for Bag Relations 11

3.6 Aggregation

The simple count aggregator from §2 is implemented with the following rewrite
rules, which resemble those for proj:

M=count(R+S) → proj(L,(L=count(R)) * proj(N,(N=count(S)) * plus(L,N,M)))))
M=count(R*S) → proj(L,(L=count(R)) * proj(N,(N=count(S)) * times(L,N,M)))))

if vars(R) ∩ vars(S) = ∅
M=count(N) → (M=N) if N ∈M

In the first two rules, L and N are new bound variables introduced by the
right-hand side of the rule. (When the rewrite rule is applied, they will—as
is standard—potentially be renamed to avoid capturing free variables in the ar-
guments to the left-hand side.) They serve as temporary registers. The third
rule covers the base case where the expression has been reduced to a constant
multiplicity: e.g.,

M=count(5=5) → M=count(1) → M=1
M=count(plus(I,J,J)*(I=5)) → M=count((I=0)*(I=5)) →∗ M=count(0) → M=0

The following rewrite rules implement sum. (The rules for other aggregation
operators are isomorphic.) The usual strategy is to rewrite A=sum(X,R) as a chain
of plus constraints that maintain a running total. The following rules handle
cases where R is expressed as a union of 0, 1, or 2 bag relations, respectively. (A
larger union can be handled as a union of 2 relations, e.g., (Q+R)+S.)

A=sum(X, 0) → (A=idsum)
A=sum(X, (X=T)) → (A=T) if T ∈ T and T does not contain X .occurs check
A=sum(X, R+S) → proj(B, (B=sum(X,R)) * proj(C, (C=sum(X,S)) * plus(B,C,A)))

The second rule above handles only one of the base cases of 1 bag relation.
We must add rules to cover other base cases, such as these:6

A=sum(X, (X=sum(Y,R))) → (A=sum(Y,R)) if X /∈ vars(R)
A=sum(X, (X=min(Y,R))) → (A=min(Y,R)) if X /∈ vars(R)

Most important of all is this case, which is analogous to the second rule of §3.5
and is needed to aggregate over sum-of-products constructions:

A=sum(X,R*S) ↔ sum_copies(R,B,A)*(B=sum(X,S)) if X /∈ vars(R)

Here, sum_copies(M,B,A) for M ∈M constrains A to be the aggregation of M ∈M
copies of the aggregated value B. The challenge is that in the general case we
actually have sum_copies(R,B,A), so the multiplicity M may vary with the free
variables of R. The desired denotational semantics are

Jsum_copies(R,B,A)KE = if JRKE · JBKE = JAKE then 1 else 0
Jmin_copies(R,B,A)KE = if (JRKE = 0 and JAKE = idmin)
or (JRKE > 0 and JAKE = JBKE) then 1 else 0

where R ∈ R and B, A ∈ T
6 As in §3.5, we could also include special rewrites for certain aggregations that have
a known closed-form result, such as certain series sums.

12 M. Francis-Landau et al.

where we also show the interesting case of min_copies(M,B,A), which is needed to
help define the min aggregator. We can implement these by the rewrite rules
sum_copies(R,B,A) → proj(M,(M=count(R))*times(M,B,A)) .assumes idsum= 0
min_copies(R,B,A) → proj(M,(M=count(R))*((M=0)*(A=idmin)+lessthan(0,M)*(A=B)))

Identities concerning aggregation yield additional rewrite rules. For example,
since multiplication distributes over

∑
, summations can be merged and fac-

tored via (B=sum(I,R))*(C=sum(J,S))*times(B,C,A) ↔ A=sum(K,R*S*times(I,J,K))

provided that I ∈ vars(R), J ∈ vars(S), K /∈ vars(R*S), and vars(R) ∩ vars(S) = ∅.
Other distributive properties yield more rules of this sort. Moreover, projection
and aggregation operators commute if they are over different free variables.

To conclude this section, we now attempt aggregation over infinite streams.
We wish to evaluate A=exists(B,proj(I,peano(I)*myconstraint(I)*(B=true))) to
determine whether there exists any Peano numeral that satisfies a given con-
straint. Here exists is the aggregation operator based on the binary or operation.

peano(I) represents the infinite bag of Peano numerals, once we define a user
constraint via the rewrite rule peano(I)→ (X=zero) + proj(J,(I=s(J))*peano(J)).
Rewriting peano(I) provides an opportunity to apply the rule again (to peano(J)).
After k ≥ 0 rewrites we obtain a representation of the original bag that explicitly
lists the first k Peano numerals as well as a continuation that represents all Peano
numerals ≥ k:
→ (X=zero) + · · · + (X= s(···s(︸ ︷︷ ︸

k−1 times

zero)···)) +

continuation︷ ︸︸ ︷
proj(J,(X=s(···s(︸ ︷︷ ︸

k−1 times

J)···)))*peano(J)

Rewriting the exists query over this (k + 1)-way union results in a chain of k
or constraints. If one of the first k Peano numerals in fact satisfies myconstraint,
then we can “short-circuit” the infinite regress and determine our answer without
further expanding the continuation, thanks to the useful rewrite or(true,C,A)→
(A=true), which can apply even while C remains unknown.

In general, one can efficiently aggregate a function of the Peano numerals
by alternating between expanding peano to draw the next numeral from the
iterator, and rewriting the aggregating R-expr to aggregate the value of the
function at that numeral into a running “total.” If the running total ever reaches
an absorbing element a of the aggregator’s binary operation—such as true for
the or operation—then one will be able to simplify the expression to A= a and
terminate. We leave the details as an exercise.

4 Translation of Dynabases to R-exprs

The translation of a Dyna program to a single recursive R-expr can be performed
mechanically. We will illustrate the basic construction on the small contrived
example below. We will focus on the first three rules, which define f in terms of
g. The final rule, which defines g, will allow us to take note of a few subtleties.
12 f(X) += X*X.
13 f(4) += 3.
14 f(X) += g(X,Y).
15 g(4*C,Y) += C-1 for Y > 99.

A Calculus for Bag Relations 13

Recall that a Dyna program represents a set of key-value pairs. is(Key,Val) is
the conventional name for the key-value relation. The above program translates
into the following user-defined constraint, which recursively invokes itself when
the value of one key is defined in terms of the values of other keys.
is(Key,Val) → (Val=sum(Result, .sum represents the += aggregator

proj(X, (Key=f(X))*times(X,X,Result)) .f(X) += X*X.
+ (Key=f(4))*(Result=3) .f(4) += 3.
+proj(X, (Key=f(X))*proj(Y,is(g(X,Y),Result)))) .f(X) += g(X,Y).
+proj(C, proj(Y, proj(Temp,(Key=g(Temp,Y))*times(4,C,Temp)) .g(4*C,Y) +=

*minus(C,1,Result)*lessthan(99,Y) C-1 for Y > 99.
) * notnull(Val) .notnull discards any pair whose Val aggregated nothing

Each of the 4 Dyna rules translates into an R-expr (as indicated by the
comments above) that describes a bag of (Key,Result) pairs of ground terms. In
each pair, Result represents a possible ground value of the rule’s body (the Dyna
expression to the right of the aggregator +=), and Key represents the corresponding
grounding of the rule head (the term to the left of the aggregator), which will
receive Result as an aggregand. Note that the same (Key,Result) pair may appear
multiple times. Within each rule’s R-expr, we project out the variables such as X

and Y that appear locally within the rule, so that the R-expr’s free variables are
only Key and Result.7

Dyna mandates in-place evaluation of Dyna expressions that have values
[4]. For each such expression, we create a new local variable to bind to the
result. Above, the expressions such as X*X, g(X,Y), 4*C, and C-1 were evaluated
using times, is, times, and minus constraints, respectively, and their results were
assigned to new variables Result, Result, Temp, and Result. Importantly, g(X,Y)
refers to a key of the Dyna program itself, so the Dyna program translated into
an is constraint whose definition recursively invokes is(g(X,Y),Result).

The next step is to take the bag union (+) of these 4 bag relations. This yields
the bag of all (Key,Result) pairs in the program. Finally, we wrap this combined
bag in Val=sum(Result,...) to aggregate the Results for each Key into the Val

for that key. This yields a set relation with exactly one value for each key. For
Key=f(4), for example, the first and second rules will each contribute one Result,
while the third rule will contribute as many Results as the map has keys of the
form g(4,Y).8

We use sum as our aggregation operator because all rules in this program
specify the += aggregator. One might expect sum to be based on the binary oper-
ator that is implemented by the plus builtin, as described before, with identity
element idsum = 0. There is a complication, however: in Dyna, a Key that has
7 It is always legal to project out the local variables at the top level of the rule, e.g.,
proj(X,proj(Y,...)) for rule 3. However, we have already seen rewrite rules that
can narrow the scope of proj(Y,...) to a sub-R-expr that contains all the copies of
Y. Here we display the version after these rewrites have been done.

8 The reader should be able to see that the third Dyna rule will contribute infinitely
many copies of 0, one for each Y > 99. This is an example of multiplicity ∞. For-
tunately, sum_copies (invoked when rewriting the sum aggregation operator) knows
that summing any positive number of 0 terms—even infinitely many—will give 0.

14 M. Francis-Landau et al.

no Results should not in fact be paired with Val=0. Rather, this Key should not
appear as a key of the final relation at all! To achieve this, we augment F with
a new constant null (similar to Prolog’s no), which represents “no results.” We
define idsum = null, and we base sum on a modified version of plus for which null is
indeed the identity (so the constraints plus(null,X,X) and sum_copies(0,X,null)

are both true for all X). All aggregation operators in Dyna make use of null in
this way. Our Val=sum(Result,...) relation now obtains null (rather than 0) as
the unique Val for each Key that has no aggregands. As a final step in expressing
a Dyna program, we always remove from the bag all (Key, Val) pairs for which
Val=null, by conjoining with a notnull(Val) constraint. This is how we finally
obtain the R-expr above for is(Key,Val).

To query the Dyna program for the value of key f(4), we can reduce the
expression is(f(4),Val), using previously discussed rewrite rules. We can get as
far as this before it must carry out its own query g(4,Y):
proj(C, (C=sum(Result,proj(Y,is(g(4,Y),Result))))

* plus(19,C,Val)) * notnull(Val)

where the local variable C captures the total contribution from rule 3, and 19

is the total contribution of the other rules. To reduce further, we now recur-
sively expand is(g(4,Y),Result) and ultimately reduce it to Result=0 (meaning
that g(4,Y) turns out to have value 0 for all ground terms Y). proj(Y,Result=0)
reduces to (Result=0)*∞—a bag relation with an infinite multiplicity—but then
C=sum(Result,(Result=0)*∞) reduces to C=0 (via sum_copies, as footnote 8 noted).
The full expression now easily reduces to Val=19, the correct answer.

What if the Dyna program has different rules with different aggregators?
Then our translation takes the form
is(Key,Val) → Val=only(Val1, (Val1=sum(Result, RSum))

+ (Val1=min(Result, RMin))
+ (Val1=only(Result, REq))
+ ...) * notnull(Val)

where RSum is the bag union of the translated += rules as in the previous example,
RMin is the bag union of the translated min= rules, REq is the bag union of the
translated = rules, and so on. The new aggregation operator only is based on a
binary operator that has identity idonly = null and combines any pair of non-
null values into error. For each Key, therefore, Val is bound to the aggregated
result Val1 of the unique aggregator whose rules contribute results to that key.
If multiple aggregators contribute to the same key, the value is error.9

A Dyna program may consist of multiple dynabases [4]. Each dynabase de-
fines its own key-value mapping, using aggregation over only the rules in that
dynabase, which may refer to the values of keys in other dynabases. In this
case, instead of defining a single constraint is as an R-expr, we define a differ-
ent named constraint for each dynabase as a different R-expr, where each of the
R-exprs may call any of these named constraints.
9 A Dyna program is also supposed to give an error value to the key a if the program
contains both the rules a = 3 and a = 4, or the rule a = f(X) when both f(0) and
f(1) have values. So we also used only above as the aggregation operator for = rules.

A Calculus for Bag Relations 15

5 Conclusions and Ongoing Work

We have shown how to algebraically represent the bag-relational semantics of any
program written in a declarative logic-based language like Dyna. A query against
a program can be evaluated by joining the query to the program and simplifying
the resulting algebraic expression with appropriate term rewriting rules. It is con-
genial that this approach allows evaluation to flexibly make progress, propagate
information through the expression, exploit arithmetic identities, and remove
irrelevant subexpressions rather than wasting possibly infinite work on them.

In ongoing work, we are considering methods for practical interpretation and
compilation of rewrite systems. Our goal is to construct an evaluator that will
both perform static analysis and “learn to run fast” [9] by constructing or discov-
ering reusable strategies for reducing expressions of frequently encountered sorts.
In the case of cyclic rewrite systems, the system should be able to guess portions
of a solution and then verify that the guesses are consistent with the rewrite
rules. A forward chaining mechanism can be used to invalidate or correct incon-
sistent guesses, as is common in Datalog, and this mechanism can also be used
for change propagation when the program or the query is externally updated [5].

Acknowledgements. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1629564. We thank Scott Smith for
helpful comments, and the WRLA program chairs Santiago Escobar and Narciso
Martí Oliet for allowing generous time to revise the paper.

References

1. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog
(and never dared to ask). In: IEEE Transactions on Knowledge and Data Engineer-
ing (1989)

2. Clocksin, W.F., Mellish, C.S.: Programming in Prolog. Springer-Verlag (1984)
3. Colmerauer, A., Roussel, P.: The Birth of Prolog, chap. 7. Association for Computing

Machinery (1996)
4. Eisner, J., Filardo, N.W.: Dyna: Extending Datalog for modern AI. In: de Moor,

O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog Reloaded. Lecture Notes in
Computer Science, Springer (2011)

5. Filardo, N.W., Eisner, J.: A flexible solver for finite arithmetic circuits. In: Technical
Communications of the International Conference on Logic Programming. Leibniz
International Proceedings in Informatics (LIPIcs) (2012)

6. Frühwirth, T.: Theory and practice of constraint handling rules. The Journal of
Logic Programming 37(1) (1998)

7. Gallaire, H., Minker, J., Nicolas, J.M.: Logic and databases: A deductive approach.
ACM Comput. Surv. 16(2) (1984)

8. Green, T.J.: Bag semantics. In: LIU, L., ÖZSU, M.T. (eds.) Encyclopedia of
Database Systems. Springer (2009)

9. Vieira, T., Francis-Landau, M., Filardo, N.W., Khorasani, F., Eisner, J.: Dyna: To-
ward a self-optimizing declarative language for machine learning applications. In:
Proceedings of the ACM SIGPLAN Workshop on Machine Learning and Program-
ming Languages (MAPL). ACM (2017)

	Evaluation of Logic Programs with Built-Ins and Aggregation: A Calculus for Bag Relations

