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Abstract
This paper introducesMFST, a new Python library for working with Finite-State Machines based on OpenFst. MFST
is a thin wrapper for OpenFst and exposes all of OpenFst’s methods for manipulating FSTs. Additionally, MFST is
the only Python wrapper for OpenFst that exposes OpenFst’s ability to define a custom semirings. This makesMFST
ideal for developing models that involve learning the weights on a FST or creating neuralized FSTs. MFST has been
designed to be easy to get started with and has been previously used in homework assignments for a NLP class as
well in projects for integrating FSTs and Neural Networks. In this paper, we exhibit MFST’s API and how to use
MFST to build a simple neuralized FST with PyTorch.

1 Finite-State Machine
A Finite-State Machine (FSM) represents a computation as a finite number of states labeled [0, N) and transitions
between those states. A FSM starts at an initial state—represented as green in this paper—and performs a series of
transitions following the directed edges until it reaches a final state—represented as red in this paper. Transitions in
a FSM can be labeled with symbols (e.g. a character in a string). In general, a Finite-State Transducer (FST) contains
two symbols on each edge. One symbol represents what is read from the FST’s input, and the other represents what
is written to the output (figure 2). In the special case that both symbols are the same along all edges, a FST can also
be called a Finite-State Acceptor (FSA) (figure 1). Furthermore, edges in a FST can also be weighted. This allows for
a FST to score different paths that accept a given string. If an input can be mapped to multiple outputs, then each
output will have a different weight assigned (figure 3).

In the remainder of this paper, we will assume the reader is familiar with the theory and algorithms behind FSTs.
Instead, we will focus on MFST and how it makes working with FSTs from Python easy. The examples in this paper
are intended to demonstrate how easy it is to get started constructing simple models rather than demonstrating
“real” models that work with real scenarios.

Figure 1: Finite-State Acceptor (FSA) for the string “hello.” State #0, is colored green as it is the initial state of the
FSA. State #5 is marked red as it is a terminal state. Strings that do not exactly match “hello” will not reach the final
state (red), thus are not accepted.

Figure 2: Finite-State Transducer (FST) that transforms the string “hello” → “world.” During each transition, a
character of the string “hello” is read from the input string—represented on the left side of the colon. On the right
hand side of the colon, the output “world” is generated one character at a time as each arc is transversed. When
the characters are the same on both the input and output side (e.g. between states 3 → 4), the colon is omitted for
readability.
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Figure 3: Weighted Finite-State Transducer where “hello” is transduced non-deterministically into both the words
“world” and “troll.” Each output word is weighted with the product of the weights along a given path. Here, “hello”
is given the weight 1 ∗ 1 ∗ 1 ∗ 2 ∗ 1 ∗ 3 = 6, and “troll” is given 1 ∗ 1 ∗ 1 ∗ 2 ∗ 2 ∗ 3 = 12. The weight 1 is omitted from
the figure for readability. If there exist multiple paths that generate the same output, the weight would be summed
across the different paths.

2 MFST: Getting Started
MFST was initially developed for teaching advanced FST techniques in a classroom setting [4]. This has motivated
MFST’s simple interface, which makes it quick to get started. MFST includes sensible defaults all accessible from
Python, while not eliminating power user features of OpenFst.

2.1 One Command Install
MFST is installable with a single command. MFST includes and automatically compiles OpenFst, requiring no addi-
tional steps from a user1.

pip install 'git+https://github.com/matthewfl/openfst-wrapper.git'

2.2 First Simple FSAs
OnceMFST is installed, it makes the first steps of interactingwith a FSTs from Python easy. Here, a FSA is constructed
for the string “hello.” The FSA is constructed using MFST’s default semiring—more on that later in section 4.

Figure 4: The simplest way to construct a FSA for the string “hello.” When a FST is returned from a Jupyter note-
book cell, it is drawn into the notebook. All figures in this paper are from MFST’s Jupyter drawings. Here we are
exemplifying how any Python iterable (such as a string) is converted into the labels on a FSA.

MFST exposes all of OpenFst’s operations2 for interacting and manipulating a FST. Whenever an instance of the
FST class is returned from a cell in a Jyputer notebook, the FST is automatically drawn into the notebook. This makes
MFST ideal for learning how FSTs work, visualizing how the different operations transform a FST without requiring
any additional steps to draw the FST (shown in figure 5). MFST, being a Python package, includes documentation
on all of its methods (adapted from OpenFst’s documentation). This documentation can be easily accessed in an
interactive Python environment using Python’s help() function (figure 6).

1Note: The install command takes around 10 minutes to run without printing any indication it is running to the terminal.
2OpenFst included operations: http://www.openfst.org/twiki/bin/view/FST/FstQuickTour#Available%20FST%

20Operations.
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Figure 5: Simple FSA constructed by taking the union of the FSA for the string “hello” and “help.” In cell #3, the
FSA is referenced using Python’s underscore variable (_) to reference the output of the previous computation. The
operations remove_epsilon and determinize are chained together here to create a FSA where the prefixes
“hel” is merged.

(a) Using Python’s help() function to access documentation for a method. The
documentation is largely adapted from OpenFst online documentation2.

(b) Tab competition in a Jupyter notebook to
list the available methods on the FST class.

Figure 6: The documentation on MFST methods is included as Python docstrings and can also be easily auto-
completed using any Python IDE.
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3 Building Transducers
FST can also be built using the add_state and add_arc methods in addition to the simplified constructor we
have demonstated so far. These methods makes it possible to build more complicated FSTs which may have loops or
may define input and output labels and weights on all of the edges. The main methods for constructing a FST are as
follows and in figure 7.

• add_state()→state_id: Modifies the FST in place to add a new state.

• add_arc(from_state, to_state, weight, input_label, output_label)→unit:
Modifies the FST in place to add a new arc between two states. If from_state and to_state are the
same, then this will create a self-loop. The weight is cast to the FST’s semiring automatically. By default
weight is set to the semiring’s identity element of 1̄. input_label and output_label are 64 bit in-
tegers. The value 0 is used to represent the special ϵ character in the FST, which indicates that no symbol is
read/written when traversing an arc. If a single character of a string is used as a label, then it is automatically
converted into a integer using its character code (via the built-in function ord in Python).

• set_initial_state(state_id)→unit: Modifies the FST to set its initial state. A FST can only have
a single initial state, and a FST without an initial state will not be usable.

• set_final_weight(state_id, weight)→unit: Modifies the FST to set the final stateweight. There
can be multiple final states, and a well defined FST should have at least one final state.

Figure 7: In Jupyter cell #4, an empty FST is first constructed using FST() with the default semiring. The edges are
added one at a time using add_arc, where most edges have different labels on the input and output side.

4 Weighted FSTs
Weighted FSTs allow for scoring a given sequence rather than just accepting or transducing an input. This is done by
assigning aweight to every edge in the FST. Theweights on a FSTmust all be instances of the same semiring, meaning
that they share a multiplication and addition operator as well as a multiplicative and additive identity ⟨+,×, 0̄, 1̄⟩.
To determine the weight for a given input/output sequence, the weights along a given path are multiplied together.
When there aremultiple paths that accept an input or transduce a given input/output pair, the weight will be summed
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Figure 8: In cell #5, the FST is composed with the FSA from figure 5 that was the union of the word “hello” and “help.”
Only the word “hello” is transduced as there is no path that accepts the word “help.” The project(’output’)
method turns the FST into a FSA using the labels on the output side.

across all paths. Changing the semiring and defining different actions for multiplication and addition can allow the
same algorithm operating on the FST to compute different results—such as in figure 11.

MFST includes the standard semirings. This includes: Python values, real numbers, min, max, tropical, and
boolean. Each of these semirings is implemented in approximately 20 lines of Python each. Custom semirings can
be defined by extending the AbstractSemiringWeight class.

MFST’s default semiring—that we have been using so far—is the boolean semiring. In the boolean semiring, all
weights along the edges are 1̄ (as the 0̄ weights are omitted). The boolean semiring is given special precedence in
MFST as the boolean semiring will be automatically cast to another semiring as necessary. All operations in MFST
which involve two or more FSTs—such as compose or union—require that all of its arguments implement the same
semiring. The boolean semiring’s automatic casting is useful as it allows us to construct FSTs and compose themwith
weighted FSTs without too much concern for which semiring is in use, such as in figure 10. MFST also provides the
method lift(semiring_class, cast_function)→FST to convert a FST from one semiring to another,
such as in figure 11.

Figure 9: Here we define a weighted FST using the RealSemiringWeight ⟨+,×⟩. This FST transduces between
the alphabet {a, b} and itself. Both symbols can be read unchanged (as they transverse the edge from state 0 → 0,
which has weight 1). If the FST encounters two “a”s in a row, then it is transduced non-deterministically into the
letter “b” with a weight of 0.5. The weight 0.5 comes from the fact that it multiplies the weights along the edges
from state 0 → 1 and 1 → 0 when reading the sequence “aa.”
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Figure 10: Here the FST defined in figure 9 is composed on its input side with the FSA which represents “aaa”
(constructed in the same way as figure 4). The FST(’aaa’) is using the default semiring, so it is automatically
cast to the RealSemiringWeight which was used to define fst. This FST has three different paths which can
generate outputs “aaa,” “ba,” or “ab.” The weight associated with each path is the result of multiplying the weights
from both FSTs which are composed together. The FST(’aaa’) only has a single path and the FST from figure 9
non-deterministically maps this and scores the transduction “aa”→“b” with weight 0.5.

Figure 11: The semiring is cast to the min-plus and max-plus semirings and then we use the shortest path algorithm
to identify the shortest path. In these semirings, the multiplication (⊙) operator is summing the length of the path
and the addition (⊕) operator is defined as min/max. This allows us to find the shortest path using the “≤” operator
where it is defined as a ≤ b ⇐⇒ a⊕ b = a for idempotent semirings.

4.1 CustomWeighted Semirings
All semirings in MFST are defined in pure Python by extending the AbstractSemiringWeight class. This
means that we can easily define a custom semiring that makes use of other libraries in Python. For example, we
may be interested in learning the weights on a FST. One way in which this can be done is to create a featurized
semiring, where we are tracking the weights associated with every feature rather than the weight of an edge itself
(appendix B).

Another approach that we can use for learning the weights on a FST is to leverage a dynamic graph neural
network frameworks, such as PyTorch. To construct a graph using standard neural network forward propagation,
we simply use PyTorch’s operations whenever we perform a semiring operation. In figure 12 we construct a custom
semiring that wraps a PyTorch tensors as a weight. We can implement the __add__ and __mul__ methods with
anything which results in a semiring. For example, if we were to implement the min semiring, then we would use
torch.min for the __add__method and use torch.add for the __mul__method. For this example, however,
we have instead chosen to exemplify how we could perform any neural operation. Here we are using a forward pass
through a linear layer followed by a sigmoid operation. Note, the “semiring” which we define in figure 12 is not a
real semiring as it does not follow the required distributivity and identity elements of a semiring3. While MFST will
still run, the outputs of an invalid “semiring” is unlikely to be stable or work in practice.

3https://en.wikipedia.org/wiki/Semiring#Definition
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5 Implementation
MFST is a thin wrapper around OpenFst’s C++ interface. OpenFst [2] has the ability to define custom semiring by
defining a custom C++ semiring class4. MFST defines a custom semiring which wraps an opaque Python object. The
Python C++ bridge makes use of PyBind11 [5], which makes passing around Python objects in C++, and exposing
C++ methods to Python largely transparent. Anytime an operation is performed by OpenFst on the semiring (such
as addition or multiplication), the call is redirected to the relevant method defined in Python. This means that we
can easily define our own semiring from Python by implementing the relevant methods. As such, all FST operations
are handled by OpenFst, hence matured and well-tuned over the years.

The images that are drawn by MFST make use of Jyputer’s _repr_html_ method5. By defining a
_repr_html_ method, this allows a class to define how it is rendered in a Jupyter notebook by returning a string
of HTML code that is used instead of the standard textual output. MFST makes use of this method to generate HTML
code that utilizes D3.js [3] and Dagre-d3 [1] to render the diagrams in the browser.

MFST’s install procedure is designed to be as easy as possible so that it can be easily accomplished by students
in a class without having to follow amulti-step installation procedure. MFST is installable using Python’s pipwith the
command: pip install 'git+https://github.com/matthewfl/openfst-wrapper.git'. When
passing pip a path to a git repository, it first git clone the repository followed by the standard package installation
command: python setup.py install. MFST makes use of this to be able to run the standard OpenFst install
from source commands. In this processes, MFST sets the --prefix argument on ./configure command to
Python’s sys.prefix variable. This is set to the current Python interpreter’s install location. When pip is run
from a virtual environment6 or anaconda, sys.prefix is set to the user’s local environment. This is usually in
the user’s home directory, hence writable. This means that MFST is able to install OpenFst on a system even when
a user does not have root permission, without requiring a user to manage installation paths themselves.
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Figure 12: A custom semiring where weights are 10-element PyTorch tensors. The multiplication and addition
operations of the semiring are calling PyTorch Neural Network operators. Note: This example is intended only to
illustate that PyTorch tensors can be passed through OpenFst as weights. The “semiring” defined here is not, in fact,
a “mathematically correct” semiring, and so actually using this as written here is ill-advised.
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(a) Composition with the default BooleanSemiring auto-
matically casts to the identity elements of the TorchSemir-
ing and then composes the two FSTs.

(b) sum_paths sums all of the paths in the FST and re-
turns the resulting weight element in the semiring.

Figure 13: torch_fst manipulated through MFST’s built-in operations.

Figure 14: Here we exemplify how the torch_fst could be used with PyTorch’s backpropagation. First, the
numerator for the path that we are interested in is selected using compose and then sum_paths to get the
value for those specific paths. We then get the normalizing constant (denominator) for all of the paths in the FST.
The variable numerator and denominator are both PyTorch tensors. As a result, we can use PyTorch meth-
ods such as torch.sum and torch.exp on these variables. As with a standard PyTorch tensor, we can use
tensor.backwards() to compute the gradient. In this example, we have not included an optimizer, though that
would be included in general. Again, as mentioned above, this example is intended to illustrate how PyTorch tensors
can be passed around through a FST as a semiring weight, not to illustrate something that is expected to work well.

Figure 15: Using MFST’s iterate_path method to see the different path from figure 10. Every path in the FST
has a sequence associated on its input side and output side (as shown above) and it associated weight. The input
paths are all “aaa” as we composed FST(’aaa’) on the input side. If we were to use this method on a FST with
cycles (such as figure 9) then it would make an infinite iterator over increasingly longer paths in the FST.
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A Abstract Semiring Class
The AbstractSemiringWeight can be found in full detail here: https://git.io/JIWKn. Here is a summary of
the Abstract Semiring base class.

class AbstractSemiringWeight:
semiring_properties : {'base', 'path'} # if an idempotent(path) semiring
def __add__(self, other): ... # semiring + operation (required)
def __mul__(self, other): ... # semiring * operation (required)
def __eq__(self, other): ... # if equal (required)
def __hash__(self): ... # hash code (required)
def __str__(self): ... # for displaying in figures
def approx_eq(self, other, delta=1.0/1024): ... # approximately equal (suggested)

def __div__(self, other): ... # used by FST().push()
def __pow__(self, n): ...
def quantize(self, delta=1.0/1024): ... # weight quantization
def member(self): ... # if element of semiring (e.g. not nan)
def reverse(self): ... # used by FST().reverse()
def sampling_weight(self): ... # used by FST().random_path()

AbstractSemiringWeight.zero = AbstractSemiringWeight(...) # static 0 and 1 weights
AbstractSemiringWeight.one = AbstractSemiringWeight(...) # (required)

B Basic Featurized Semiring
This exhibits how Python’s Counter dictionary could be used to track weights for a feature. Here the counts of a
feature are summed along a path, the max value for a given feature is selected if there are multiple paths.

from mfst import AbstractSemiringWeight
from collections import Counter
feature_weight = {} # weights stored in a global dict
class FeaturizedWeight(AbstractSemiringWeight):

def __init__(self, features):
self._features = Counter(features)
self._hash = hash(frozenset(self._features))

def __add__(self, other):
# take the max count for a given feature across different paths
return FeaturizedWeight(self._features | other._features)

def __mul__(self, other):
return FeaturizedWeight(self._features + other._features)

def __str__(self):
return str(self._features)

def __eq__(self, other):
return self._hash == other._hash and self._features == other._features

def __hash__(self):
return self._hash

def approx_eq(self, other, delta=1.0/1024):
return sum(abs(self._features - other._features)) < delta

def sampling_weight(self):
result = 0
for key, val in self._features.items():

result += feature_weight.get(key, 0) * val
return result
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