
DECLARATIVE PROGRAMMING VIA TERM REWRITING

by

Ma�hew Francis-Landau

matthew@matthewfl.com

https://matthewfl.com/phd

A dissertation submi�ed to The Johns Hopkins University in conformity

with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland

February 2024

Last Updated: February, 14 2024

© 2024 Ma�hew Francis-Landau

All rights reserved

https://matthewfl.com/phd

Abstract

I present a new approach to implementing weighted logic programming languages.

I first present a bag-relational algebra that is expressive enough to capture the

desired denotational semantics, directly representing the recursive conjunctions,

disjunctions, and aggregations that are specified by a source program. For the

operational semantics, I develop a term-rewriting system that executes a program

by simplifying its corresponding algebraic expression.

I have used this approach to create the first complete implementation of the Dyna

programming language. A Dyna program consists of rules that define a potentially

infinite and cyclic computation graph, which is queried to answer data-dependent

questions. Dyna is a unified declarative framework for machine learning and

artificial intelligence researchers that supports dynamic programming, constraint

logic programming, reactive programming, and object-oriented programming. I

have further modernized Dyna to support functional programming with lambda

closures and embedded domain-specific languages.

The implementation includes a front-end that translates Dyna programs to

bag-relational expressions, a Python API, hundreds of term rewriting rules, and

a procedural engine for determining which rewrite rules to apply. The rewrite

rules generalize techniques used in constraint logic programming. In practice, our

system is usually able to provide simple answers to queries.

Mixing disparate programming paradigms is not without challenges. We had to

rethink the classical techniques used to implement logic programming languages.

This includes the development of a novel approach for memoization (dynamic

programming) that supports partial memoization of fully or partially simplified

algebraic expressions, which may contain delayed, unevaluated constraints. Fur-

thermore, real-world Dyna programs require fast and e�icient execution. For this

ii

reason, I present a novel approach to just-in-time (JIT) compile sequences of term

rewrites using a custom tracing JIT.

iii

Thesis Readers

Dr. Jason Eisner (Primary Advisor)
Professor of Computer Science
Department of Computer Science
Johns Hopkins University

Dr. Michael Hanus
Professor of Computer Science
Institut für Informatik
Christian-Albrechts-Universität zu Kiel

Dr. Sco� Smith
Professor of Computer Science
Department of Computer Science
Johns Hopkins University

iv

I dedicate this to Angela and our

posse of flu�y pets who

fill every day with joy.

v

Acknowledgements

This dissertation is the result of several years of work that would have been impos-

sible without the help of several others.

I want to thank my Ph.D. advisor, Jason Eisner. Jason has been a guiding

force throughout my entire Ph.D. He has made himself consistently available for

discussion around research and pushed to make the work as general as possible.

It is undeniable that without Jason’s influence, I would not explored the term

rewriting formalisms presented in this dissertation.

I also want to thank Tim Vieira and Nathaniel Wes Filardo, who also worked

on the Dyna project. Diving into the depths of this research would have been

unbearably lonely had it not been for Tim and Wes, who collaborated on these

publications and also participated in countless hours of discussion throughout the

entire process.

For this dissertation, I would like to thank my commi�ee of Jason Eisner, Michael

Hanus, and Sco� Smith, who read through the 400 page dra� of this dissertation.

Their comments have undoubtedly improved the clarity of this document. Any

remaining mistakes are my own.

I want thank all of the fellow students in the Argo research and in the broader

CLSP community for making Baltimore a welcoming environment for these last few

years: Jacob Buckman, Tóngfēi Chén, Ryan Co�erell, Leo Du, Seth Ebner, Nathaniel

Wes Filardo, Lisa Li, Chu-Cheng Lin, Brian Lu, Teodor Marinov, Becky Marvin, Arya

McCarthy, Hongyuan Mei, Sabrina Mielke, Pamela Shapiro, Tim Vieira, Dingquan

Wang, Zach Wood-Doughty, and Patrick Xia.

Finally, I want to thank Greg Durre�, Dan Klein, and John Kubiatowicz, who su-

pervised my research during my undergraduate studies. Without their supervision

and inspiration, I would have never started the Ph.D. journey.

vi

Contents

Abstract . ii

Dedication . v

Acknowledgements . vi

Contents . vii

List of Figures . xvi

List of Algorithms . xxi

Chapter 1 Introduction . 1

1.1 Dissertation Outline . 2

1.2 Brief History of the Dyna Project . 3

Chapter 2 The Dyna Programming Language 6

2.1 Dyna’s Roots in Logic Programming 8

2.1.1 Structured Terms . 10

2.1.1.1 Builtin Structured Terms 11

2.2 Weighted Rules . 13

2.2.1 Evaluation by Default . 15

2.3 A User’s Interaction With Dyna . 16

2.3.1 Python API . 17

2.3.2 Multi-file Programs . 19

2.4 Invariance to Expression Order . 20

2.5 Fixed-Point Computations . 21

vii

2.6 Non-ground Reasoning . 23

2.7 Memoization, Dynamic Programming, and Reactive Programming . 24

2.7.1 Prioritization of Updates . 25

2.7.2 Memoization with non-ground variables 26

2.8 Modern PL Constructions . 27

2.8.1 Higher-Order Functions . 28

2.8.2 Lambda functions . 29

2.8.3 Type Declarations . 29

2.8.3.1 Type Checking and Type Errors 30

2.9 Object-Oriented Programming (OOP) via Dynabases 31

2.9.1 Dynabases vs Procedural Programming OOP 32

2.10 Embedded Domain Specific Languages 33

2.10.1 String DSLs . 33

2.10.2 Macros . 34

Chapter 3 Related Work . 36

3.1 Logic Programming Languages . 36

3.1.1 Prolog Language . 37

3.1.1.1 Infinite Relations in Prolog 41

3.1.2 Datalog Language . 42

3.1.3 Datalog is Breath First, Prolog is Depth First 43

3.1.4 Aggregation in Logic Programming 44

3.1.5 Constraint Logic Programming 45

3.1.5.1 MiniKanren . 45

3.1.6 Constraint Satisfaction Programming 46

3.2 Probabilistic Programming . 47

3.3 Relational Algebra . 47

3.4 Term rewriting . 49

3.4.1 Implementation of Term Rewriting 49

3.4.2 Term Rewriting a Relational Algebra for Logic Programming 49

3.4.3 Functional Logic Programming 50

3.5 Memoization & Reactive . 51

3.6 Compilation . 52

Chapter 4 Challenges in Dyna . 56

viii

4.1 Features in Dyna . 57

4.2 Examples of Di�icult Programs . 61

4.2.1 All Pairs Shortest Path . 61

4.2.2 “Infinite” Neural Network . 62

4.2.3 “Infinitely” Many Dynabases 63

4.2.4 “Infinite” Identity Matrix . 64

4.3 A Common Theme . 65

Chapter 5 Relational Expressions for Logic programming 66

5.1 Representing Programs Using Bags 67

5.1.1 Bags of Named Tuples . 67

5.1.2 Representations of Constraints in Bags 68

5.1.3 A First Step Towards Computation with Bags 69

5.1.4 A More Convenient Notation 70

5.2 Semantics of R-exprs . 71

5.2.1 Ground Values . 71

5.2.2 Inductive Definition of R-exprs Semantics 72

5.2.2.1 Equality Constraints 73

5.2.2.2 Structured Term Equality Constraints 73

5.2.2.3 Builtin R-exprs Constraints 74

5.2.2.4 Constraints . 74

5.2.2.5 Disjunctions . 74

5.2.2.6 Conjunctions . 75

5.2.2.7 Multiplicities . 75

5.2.2.8 Conditionals . 75

5.2.2.9 Projection . 76

5.2.2.10 Aggregation . 77

5.2.2.11 User-defined R-exprs 77

5.3 Example R-exprs . 78

5.3.1 Finite Materialized Relation 78

5.3.2 Bag with Constraints . 79

5.3.3 Simple Dyna Rule . 80

5.4 Conclusion of R-expr Semantics . 81

Chapter 6 Rewrites Rules for R-exprs . 82

ix

6.1 Equality Constraints and Multiplicity 82

6.1.1 Structured Term Equality Rewrites 83

6.1.2 Multiplicity Rewrites . 84

6.2 Joining Relations . 84

6.2.1 Simple Example . 85

6.2.2 Structuring Disjuncts and Conjuncts as Tries 86

6.3 Built-in R-expr Rewrites . 87

6.4 Projection . 89

6.4.1 Example Projection . 90

6.5 Aggregation . 90

6.5.1 Rewrite Rule 50 for Handling Disjunctions 91

6.5.2 Other Aggregation Rewrites 94

6.5.3 Rewriting Aggregation With Partial Information 95

6.6 Conditional if-Expression Rewrites 96

6.7 User-Defined R-exprs Rewrites . 97

6.8 Incompleteness of Included Rewrites 98

Chapter 7 Conversion of Logic Programs to Relational Expressions . 99

7.1 Dyna Programs Represent a Key-Value Map 99

7.1.1 Grouping User-Defined Rules by Name 100

7.1.2 Di�erent Aggregators . 101

7.1.3 Additional Metadata for Aggregators 102

7.1.4 Built-ins . 103

7.1.5 Dynabases . 104

Chapter 8 A Basic Implementation of R-expr Rewriting 105

8.1 R-exprs, The Data Structure . 106

8.2 Evaluation by Simplifying an R-expr 107

8.2.1 Properties of Simplify . 108

8.2.2 Finding Applicable Rewrites 110

8.2.2.1 The Context . 110

8.2.3 Canonical Ordering of an R-expr 113

8.2.3.1 Why factored R-exprs are Preferable 115

8.A Appendix: Basic Simplify Pseudocode 117

x

Chapter 9 Rearranging R-exprs to Enable Further Rewriting 123

9.1 The Problem with Simplify from Chapter §8 123

9.2 Using Nested Constraints . 127

9.2.1 Example Using Optional Constraints 130

9.2.2 Can Optional Constraints Solve all Disjunctive R-exprs? . . . 133

Chapter 10 Memoization, Reactivity, Cycles, and Updates 134

10.1 What is Memoization? . 136

10.1.1 Example of Memoization in a Procedural Programming Lan-

guage . 137

10.1.2 The Facets of Memoization 139

10.2 First Steps Towards R-expr Memoization 140

10.2.1 Advantages of Homogeneity 143

10.2.2 Persisting Memos to Make them Globally Usable 144

10.2.3 Things to Consider When Choosing a Signature for Memo-

ization . 145

10.3 Example: Memoization of an R-expr 146

10.3.1 Conclusion of Basic Memos 149

10.4 Handling Change . 150

10.4.1 Assuming Reads Never Change 150

10.4.1.1 Updating Memoized R-exprs 152

10.4.2 Example: Updating a Dyna Program 152

10.5 Handling Cyclic Programs . 154

10.5.1 Making Guesses . 155

10.5.1.1 Example: Using Guessing with a Cyclic Program . . 156

10.5.2 Choice of default Guesses . 158

10.5.2.1 User Override for Initial Guesses 158

10.5.3 Guesses are Un-bypass-able 159

10.5.3.1 Why Guessing Requires if-expressions 160

10.6 Memoization Container . 161

10.6.1 Memoization Container . 162

10.6.2 Handling Memos we “Want” but do not “Have” 163

10.7 Update Loop . 164

10.8 Controlling Memoization . 165

10.8.1 $memo Controller . 166

xi

10.8.2 $ground and $free Annotation 167

10.8.3 "unk"Memos . 168

10.8.4 Implementation of $memo . 169

10.8.5 Ordering Updates with $priority 170

Chapter 11 A Realistic Implementation of R-exprs 172

11.1 Design Goals for our Implementation 172

11.1.1 What does “E�icient Implementation” Mean? 173

11.2 Implementation Overview . 175

11.3 Dyna’s Front-end . 177

11.4 Realistic Rewriting, Part 1 . 179

11.5 Declaration of R-exprs and Rewrites 181

11.5.1 Declaration of R-expr Kinds 182

11.5.2 Declaration of Built-Ins . 183

11.5.3 Declaration of Rewrite Rules 184

11.5.3.1 First Declaration of a Rewrite Rule 185

11.5.3.2 Assignment Rewrites 186

11.5.3.3 Handling Invalid Inputs 187

11.5.3.4 Modifying the Context 188

11.5.3.5 Rewrite Priorities . 189

11.5.3.6 Inference Rewrites 189

11.5.3.7 Combining R-exprs for Inference Rewrites 190

11.5.3.8 Recursive Rewrites 191

11.5.4 Conclusion of R-exprs and Rewrites Declarations 192

11.6 E�icient R-exprs Kinds . 192

11.6.1 E�icient Disjunctions . 192

11.6.1.1 Requirements on the E�icient DisjunctionData Struc-

ture . 193

11.6.1.2 E�icient Disjunction using a Trie 195

11.6.2 E�icient Memoization uses Tries 196

11.6.3 E�icient Aggregation & Projection 197

11.7 Iterators . 204

11.7.1 Iterator Interface . 204

11.7.2 Di�erent Kinds of Iterators 207

11.7.3 Iterators A�empt to Stream Values 207

xii

11.7.4 Using Iterators . 209

11.7.5 E�icient Aggregation uses Iterators 210

Chapter 12 Compilation of R-expr Rewrite Strategies 211

12.1 What is Overhead? . 212

12.1.1 Overhead with R-exprs Rewriting 213

12.2 Compilation Overview . 215

12.3 Generating New JITted R-expr Kinds 216

12.4 Generating New Rewrites . 217

12.4.1 Combing Multiple Rewrites Into One 219

12.4.1.1 What Happens If Only Some Rewrites Match? . . . 222

12.4.2 How to Reenter JITted R-exprs 223

12.4.3 Abstract Evaluation of Primitive Rewrites 224

12.4.4 Structure of Generated Rewrites 227

12.4.5 Generating Aggregators in the JIT-Generated Rewrites 227

12.5 What is JITable? . 230

12.6 Starting the JIT Compiler . 233

12.7 Experiments: Benchmarks . 233

Chapter 13 Object Oriented Programming in a Pure Declarative Lan-

guage . 240

13.1 Dynabases . 240

13.2 Dynabase Object Representation . 241

13.2.1 Why Capture All Variables? 242

13.3 Desugared Dynabases . 243

13.4 Dynabase Rewrite Rules . 245

13.5 Self-Inheritance . 247

13.6 Comparison with 2011 Proposal for Dynabases 249

Chapter 14 Folding and Speculative Rewrites for Recursive Programs 252

14.1 Why Fold a Program . 253

14.2 How to Fold . 254

14.3 Example Using Folding to Solve a Recursive Program 256

14.4 Folding Updatable User-Defined R-exprs 260

Chapter 15 Properties of Simplify . 262

xiii

15.1 Is Simplify Sound and Complete? . 262

15.1.1 Soundness of Simplify . 263

15.1.2 R-exprs Rewrites are Incomplete 264

15.1.2.1 Completeness on Datalog Subset 265

15.1.2.2 Emulating SLD Resolution 266

15.2 Dyna is Turing Complete . 268

15.3 Termination of SimplifyNormalize on a Bounded Size R-expr 270

15.3.1 Making an R-expr Bounded in Size 270

15.3.2 Outline: How to Prove Termination 272

15.3.3 Construction of “Core” Energy 272

15.3.4 Energy for Built-in R-exprs 278

15.3.5 Energy for all R-exprs . 279

15.3.6 Checking Energy of Rewrites 281

Chapter 16 Future work . 282

16.1 Additional Disjunctive R-exprs . 282

16.1.1 Improvements to the Trie . 282

16.1.2 Dense Numerical Types . 283

16.1.3 Backed by Something other than Memory 283

16.2 User Studies . 284

16.2.1 Libraries Wri�en in Dyna . 284

16.2.2 User-Friendliness . 284

16.3 More Rewrite Rules . 286

16.4 Automatic Configuration . 286

16.4.1 Automatic Guessing on Cycles 286

16.4.2 Automatic Prioritization of Updates 287

16.4.3 Automatic Variable Ordering 287

16.5 Concurrency . 288

16.6 The Memoization Update �eue . 288

16.7 GPU Coprocessor . 288

16.8 External Solvers . 289

16.9 Advanced Update Propagation . 290

16.10Automatic Runtime Analysis and Folding of Programs 290

16.11Improved Context C . 290

xiv

Chapter 17 Conclusion . 292

Bibliography . 293

xv

List of Figures

Figure 1-1 Dependency Graph Between Chapters 3

Figure 3-1 Simple Prolog/Datalog Program 38

Figure 3-2 One additional Constraint 40

Figure 3-3 Constraint in Prolog . 40

Figure 3-4 Adding a cut to avoid backtracking through all possible

assignments. 41

Figure 3-5 Infinite relation in Prolog 42

Figure 3-6 Datalog program . 43

Figure 3-7 Aggregation in Prolog . 44

Figure 3-8 Constraints Intersection . 45

Figure 3-9 Example SQL query . 48

Figure 3-10 Example SQL with aggregation and GROUP BY. 48

Figure 3-11 Example function ge�ing traced 53

Figure 3-12 First generated version of the function ExampleFunction

from figure 3-11 using tracing. 53

Figure 3-13 A�er the first “not yet generated” branch has been hit and

additional code has been added. 54

Figure 3-14 The program has ended as it hits the return statement. Not

all branches of the code have been hit, so there can still be

un-generated parts of the compiled code. 55

Figure 5-1 Semantics definitions of R-exprs 72

Figure 5-2 Bag of ground assignments 79

Figure 5-3 Bag of even integers. 79

Figure 5-4 Simple Dyna program wri�en as an R-expr. 80

xvi

Figure 6-1 Example Rewrites with Projection 90

Figure 7-1 Single rule Dyna program. 100

Figure 7-2 Two user-defined rules with overlap. 101

Figure 7-3 sumlist as an R-expr . 101

Figure 7-4 Multiple aggregators can co-exist as long as they do not

overlap. 102

Figure 7-5 The := aggregator . 102

Figure 7-6 Built-ins represented using equivalent built-ins 103

Figure 7-7 Dyna syntactic features with their semantics backed by

built-ins . 104

Figure 8-1 Rewriting without a context and explicit bidirectional rules 111

Figure 8-2 Context tracking conjunctive R-exprs during recursive Sim-

plify Calls . 113

Figure 8-3 Rewriting With a Context and No Bidirectional Rules . . . 114

Figure 8-4 Dyna program with intersection of less than and greater

than 5 . 115

Figure 8-5 Translation of figure 8-4 without aggregators. 115

Figure 8-6 Without aggregators, the distributive rewrites can expand

R-exprs . 116

Figure 8-7 Figure 8-4 translated into R-exprs with aggregators. 116

Figure 8-8 Figure 8-7 a�er factoring 117

Figure 9-1 SAT formula as Dyna program 124

Figure 9-2 SAT formula as an R-expr 126

Figure 9-3 SAT formula as an R-expr a�er propagation 127

Figure 9-4 R-expr with aggregation over a disjunction 130

Figure 9-5 Optional constraint introduced for X. 131

Figure 9-6 Optional constraint weakened with a disjunct. 131

Figure 9-7 Optional constraints from figure 9-6 factored out of the

disjunct. 131

Figure 9-8 Optional Constraint turned back into normal constraint . . 132

Figure 9-9 Aggregator evaluated and rewri�en 132

Figure 9-10 Default contributions prevents useful optional constraint . 133

xvii

Figure 10-1 Fibonacci program wri�en in Python 137

Figure 10-2 Fibonacci Program with Memoization 139

Figure 10-3 Simple R-expr memo . 141

Figure 10-4 Sum3 . 144

Figure 10-5 Sum3 with a memo . 144

Figure 10-6 Dyna translated to R-exprs 145

Figure 10-7 Memo added to user-defined R-expr 145

Figure 10-8 Fibonacci as an R-expr . 147

Figure 10-9 Fib R-expr with memo for 0 and 1 147

Figure 10-10Fib R-expr with a new memo for 2 148

Figure 10-11Fibonacci if-expressions merged 149

Figure 10-12Dyna programs which require Memos to be updated 150

Figure 10-13Class design for an Assumption 151

Figure 10-14Memo for simple Dyna rule 153

Figure 10-15 Invalid Memo due to external update 153

Figure 10-16Memo updated to match new user definition 154

Figure 10-17Cyclic Program and R-expr 155

Figure 10-18Memo created with initial guess 156

Figure 10-19Cyclic Memo a�er one iteration 156

Figure 10-20Cyclic Memo a�er two iterations 157

Figure 10-21Cyclic memo once it has converged a�er many iterations . 157

Figure 10-22User override for default guess 159

Figure 10-23Non-deterministic Dyna program depending on guesses . . 159

Figure 10-24Cyclic rule that can take on any value 160

Figure 10-25The memoization container 161

Figure 10-26memoRead approximation 164

Figure 10-27Semantic definition and rewrite rule for $ground 168

Figure 10-28Want memoized $memo adapter 170

Figure 11-1 Example R-exprs used by line 473. 174

Figure 11-2 Major components in implementation overview 176

Figure 11-3 Basic Implementation of Rewrite Rule 185

Figure 11-4 Assignment Rewrite . 186

Figure 11-5 Rewrite checking inputs . 187

Figure 11-6 Context modified by Rewrite 188

xviii

Figure 11-7 Rewrite run at construction 189

Figure 11-8 Inference Rewrites Infers New Constraint 190

Figure 11-9 Match-combines rewrites matches against the R-expr and

context . 191

Figure 11-10Rewrite with Recursive Simplify Calls 191

Figure 11-11Ground Dyna Program translated into R-exprs 193

Figure 11-12Standard “ine�icient” implementation of disjunction. . . . 193

Figure 11-13Disjunctive R-expr as a Trie 195

Figure 11-14Construction of E�icient Disjunct 196

Figure 11-15Dyna program with two contributions 198

Figure 11-16 Ideal evaluation for program with two contributions 199

Figure 11-17E�icient Aggregation R-expr Example 200

Figure 11-18E�icient Aggregator Implementation 201

Figure 11-19 Inner Aggregator Embedding itself into an R-expr 202

Figure 11-20High-level overview of how the inner and outer aggregator

interact . 203

Figure 11-21 Java Interfaces for iterables and iterators. 205

Figure 11-22Example R-expr with projection of X 207

Figure 11-23Merging conjunctive iterators 208

Figure 11-24Merging conjunctive iterators for di�erent variables 208

Figure 11-25Merging disjunctive iterators 209

Figure 12-1 Example Python with procedural instructions 212

Figure 12-2 Flame graph for CKY Parsing 214

Figure 12-3 Creating JIT states . 218

Figure 12-4 Generate a new JIT rewrite 220

Figure 12-5 Single generated rewrite with branches for failed precondi-

tions . 221

Figure 12-6 Transitions between generated R-exprs via rewrites 223

Figure 12-7 Equivalent R-exprs . 224

Figure 12-8 High-level example of generated code 228

Figure 12-9 Example JIT-Generated Rewrite 229

Figure 12-10Conceptual example of aggregation performed by a JIT-

generated rewrite . 231

Figure 12-11Simple program used for benchmarking 234

xix

Figure 12-12Ratio between JIT compiled vs non-JIT compiled 235

Figure 12-13 JIT-generated R-exprs and rewrites significantly reduces

required and a�empted matches 236

Figure 12-14Results of benchmark . 238

Figure 12-15Flame graph for example JIT benchmark 239

Figure 14-1 Recursive Map List Function 253

Figure 14-2 Example folding with the map function 254

Figure 14-3 Even and Odd List Length Example 256

Figure 14-4 Even and Odd List translated into an R-expr 257

Figure 14-5 First fold of no_possible_list 258

Figure 14-6 Impossible constraints are rewri�en as 0 259

Figure 14-7 Even and Odd now recognized as Conjuncts in recursion . 259

Figure 14-8 Even and Odd folded, to recognize recursion 260

Figure 14-9 Even and Odd is found to be impossible 260

Figure 15-1 Fermat last theorem as an R-expr 264

Figure 15-2 Partially expanded recursive R-expr 271

Figure 15-3 Exponential sized R-expr . 272

Figure 16-1 Dense Array R-expr . 283

xx

List of Algorithms

1 Simple version of SimplifyNormalize 109

2 Short Example of Simplify . 121

3 Helper Functions for Simplify . 122

4 Process Update Function . 165

5 Example procedural implementation of matrix-vector product . . . 175

6 Font-end for Dyna . 179

7 Simplify Normalize Redesigned . 182

xxi

Chapter 1

Introduction

The promise of usable declarative programming has a�racted many to the declara-

tive programming paradigm. Declarative programming is a paradigm where the

program will specify what the result of the program should be without specifying

how the program should perform the computation [100]. This allows the program-

mer to focus on the task while leaving maximum flexibility to the implementation

of the declarative programming language. As such, the declarative paradigm is suc-

cessful in a number of di�erent domains. For example: databases with SQL [36, 44],

optimization and search problems with SMT/SAT [15, 45], and logic programming

languages such as Prolog [35, 38] and Datalog [30, 76].

Our group’s research is in the space of Declarative Logic Programming designed

for Machine Learning (ML) and Artificial Intelligence (AI) Algorithms. This research

is called the Dyna programming language project, which investigates how Datalog-

inspired programming languages can be used to be�er encode AI algorithms [1, 59].

This dissertation represents the latest iteration of the Dyna programming lan-

guage project. The work here is based on the culminated learning from three

di�erent implementations of Dyna I created during my Ph.D. This dissertation

is the first to fully support the vision of Dyna proposed back in 2011 by Eisner

and Filardo [59]. The approach within has the potential to enable a new class of

powerful declarative logic programming languages, such as Dyna. Our approach

is based on term rewriting on top of a relation algebra we call R-exprs (short for

Relational expression). We have figured out how to mix a number of language

features previously thought incompatible. This includes: Prolog-style backward

1

chaining, Datalog-style forward chaining, mixed-chaining [67], memoization, re-

active programming, folding & speculation, constraints satisfaction, functional,

weighted terms and aggregation of multiple values for a single term (chapter §2).

Developing a new approach to implement declarative logic programming is

not without its challenges. As such, we have investigated ways to make R-exprs

practical. This includes novel (and more powerful) approaches for memoization,

object-oriented programming, implementation of R-exprs and their rewrite rules,

and compilation of sequences of rewrites.

1.1 Dissertation Outline

This dissertation focuses on the applicability of term rewriting to the implemen-

tation of modern logic/weighted declarative programming languages with appli-

cations to ML/AI researchers. As such, I believe there are three di�erent kinds of

people whomight choose to read this dissertation: (1) AI/ML researchers whomight

be interested in using the Dyna language implemented in this dissertation, (2) logic

programming researchers who are interested in understanding how term rewriting

can be used, and (3) term rewriting researchers who are looking for interesting

applications of term rewriting.

For those interested in using Dyna, chapter §2 is wri�en as a user manual

for Dyna and should be the only chapter that one needs to read to use Dyna.

Chapters 5 to 8 introduces our relational algebra, R-exprs, how Dyna programs are

converted into a R-exprs and introduces our how our rewriting process is setup.

Chapters 9 to 12 build on chapter §8 to discuss some “more advanced” techniques

that I have implemented on top of term rewriting to implement features such as

iteration of variable domains, memoization and compilation of multiple steps of

rewriting. Chapters 13 to 15 include miscellaneous discussion around Dyna and

R-expr rewriting. The dependency graph between chapters is approximately as

shown in figure 1-1, and readers should feel free to jump around between chapters.

2

2
Dyna language

5
Relational Expressions

R-exprs

7
Conversion from
Dyna to R-exprs

6
Rewrite rules

8
Basic

Implementation

9
Advanced Rewrites
by Rearranging

10
Memoization &
Cyclic Programs

11
Realistic

Implementation

12
Compilation

13
Object
Oriented

14
Speculation/Folding for
Recursive Programs

15
Properties of

Rewrite System

16
Future work

3
Related Work

4
Challenges of Dyna

Figure 1-1. Dependency Graph Between Chapters

1.2 Brief History of the Dyna Project

The Dyna project was originally started in 2003 as an umbrella project to develop

a programming language for ML researchers [60]. Most algorithms that ML re-

searchers implement can be expressed in a few lines of math.1 In the process of

researching new algorithms, researchers o�en have to iterate many times, refining

their algorithms. This means that they first revise the mathematical concept of

their algorithm and then recode their program to match. The project Dyna aims to

reduce the distance between mathematical concepts and executable code.

1This is still true of large neural networks. However, neural networks research o�en builds on
top of a large library such as PyTorch [111] or TensorFlow [4], which contain many existing neural
net modules. Conceptually, similar so�ware libraries could be implemented in Dyna.

3

This discrepancy between non-executable mathematical notation and executable

programs was the central motivation for the Dyna project and led to the devel-

opment of Dyna 1.0 [60, 61]. Dyna 1.0 extended Datalog [76]2 by replacing the

boolean semiring used in logic programming to allow the use of any semirings.

In other words, this meant that Dyna 1.0 was a notation for dynamic programs.

As such, Dyna 1.0 was successfully used in several research papers: Dreyer and

Eisner [54], Dreyer et al. [55], Eisner et al. [62], Eisner and Smith [63], Karakos et al.

[95], Schafer [117], Smith and Eisner [121, 122, 123], Smith and Smith [124], Smith

and Eisner [125, 126, 127, 128], Smith et al. [129, 130].

On the heels of Dyna 1.0’s success, Dyna 2.0 was proposed to rectify many

of the limitations of Dyna 1.0 [59]. Dyna 1.0 requires all rules to use the same

semiring3. Dyna 2.0 removes this restriction. Instead Dyna 2.0’s rules define general

functions. Dyna 1.0 is a dialect of Datalog, and as such, requires all terms derived

using forward chaining to only contain ground terms4. This allowed the Dyna 1.0

compiler to generate programs that loop over the entire domain of an expression—

much like a scan of a database table. Dyna 2.0 has no such restriction. Instead,

Dyna 2.0 allows for variables in the program to remain free5 as in Prolog. Dyna 2.0

performs unification similar to Prolog where expressions like a(X)=a(Y) unifies X

and Y together without knowing the value of X or Y. Dyna 2.0 also supports lazy

expression allowing for expressions like X+Y=Z to remain “unevaluated”. Dyna 2.0 can

also eagerly compute and memoize any expression to avoid recomputing the same

expression many times. Dyna 2.0 also introduced a prototype-based inheritance

mechanism (dynabases), which is useful for building larger programs.

It was shown in Eisner and Filardo [59] that the proposed features of Dyna 2.0

2Datalog will be explained further in section §3.1.2. In short, Datalog can be thought of as a
programming language that operates over boolean values as a dynamic program. All statements
in a Datalog program are materialized in database tables, which are queried (and joined) with a
Prolog-like syntax.

3 A semiring is an algebraic structure that has an additive and multiplicative operator, additive
and multiplicative identity elements. Semirings do not have an additive inverse, like rings. For
example, logic programming operates over the boolean semiring, ⟨or,and, f alse, true⟩. Dyna 1.0
semirings could include the real numbers ⟨+,∗,0,1⟩, or the min value (shortest path) ⟨min,+,∞,0⟩,
but all rules had to use the same semiring.

4Ground terms means that all of the values in the expression are known. For example, the term
foo(1,2,"hello") is ground, as both integers 1 and 2 and the string "hello" are ground.

5A term with a free variable would be like bar(7,X) where the variable X can represent any
value.

4

allowed for many ML algorithms to be concisely expressed. However, the unfore-

seen consequence of Dyna 2.0’s design was that existing mainstream techniques

for logic programming no longer worked. This spurred the current research phase

to develop the necessary theory and techniques to implement Dyna 2.0: Filardo

[66], Filardo and Eisner [67, 68], Francis-Landau et al. [70], Vieira [141], Vieira et al.

[142]. Our group’s research on Dyna also includes two Ph.D. dissertations prior to

this one. The first, by Nathaniel W. Filardo, constructed a theoretical foundation

for understanding the well-foundedness of Dyna 2.0 programs [66]. The second dis-

sertation, by Tim Vieira, investigated automated program transformations, which

can improve the asymptotic runtime of Dyna 1.0 dynamic programs [141].

This dissertation focuses on the implementation of the Dyna 2.0 language. I ac-

complish this by developing a novel representation of Dyna programs using R-exprs,

a relational algebra, and develop an execution strategy using term rewriting. Much

of the work presented in this dissertation is brand new work on Dyna, while other

work in this dissertation will adapt the techniques that were previously developed

by Eisner, Filardo, and Vieira to the R-expr presentation in this dissertation. Namely,

chapter §10 will introduce how memoization works with R-exprs, which builds on

Filardo’s dissertation work, and chapter §14 will discuss how the kinds of program

transformations, that are central to Vieira’s dissertation work, can be implemented

using R-exprs.

From this point forward, the name “Dyna” will only refer to the Dyna 2.0 version

of Dyna defined in chapter §2. The version of Dyna presented in chapter §2 contains

some additional features and slight modifications since the original Dyna 2.0 paper

of 2011 [59].

5

Chapter 2

The Dyna Programming
Language

In this chapter, I will detail the surface-level syntactic features of Dyna as imple-

mented in this dissertation.6 This chapter is intended as a user guide for a developer

who is interested in writing Dyna programs. If you (the reader) are only interested

in learning how to use Dyna, and do not care about how Dyna works internally,

then this chapter should be the only chapter that you need to read.

The syntax for Dyna was originally proposed in Eisner and Filardo [59] and builds

on the earlier Dyna papers (section §1.2). I continue to build on this design and

extend it in this dissertation. Dyna started with the syntax of logic programming

and deviates in a few ways in an a�empt to modernize logic programming and

make it more palatable for Machine Learning (ML) and Artificial Intelligence (AI)

researchers. Primarily, this means having the ability to perform weighted reasoning.

For example, a weight can be used to assign a probability to each expression in the

program (section §2.2). Furthermore, most ML and AI researchers are primarily

writing programs using Python. As such, my Dyna implementation provides an

API to be able to easily interact with Python (section §2.3.1).

Our hope for the Dyna project is to enable new approaches to ML and AI

to be easily explored, as well as existing approaches to be easily implemented.

By this, I mean that we have a�empted to incorporate support for commonly

6The Dyna project has had many implementations and di�erent dialects over the years. Details
of these alternate implementations can be found on the project’s website http://dyna.org.

6

http://dyna.org

used programming techniques as well as techniques that are rarely included in

programming languages due to their inherent complexity. This includes: invariance

to expression ordering—much like a constraint engine—(section §2.4), fixed-point

computation and memoization (sections § 2.5 and 2.7)—which is good for handling

cyclic reasoning in graphs—, non-ground reasoning (section §2.6), support for

domain-specific languages (section §2.10).

As a new take on logic programming, Dyna also includes a number of niceties that

have become commonplace among modern7 mainstream programming languages.

This includes: higher-order functions (section §2.8.1), lambda functions/closures

(section §2.8.2), prototype-based inheritance/objects (dynabases) (section §2.9),

dependent types (section §2.8.3), and builtin commonly used data structures (such

as a hash maps) (section §2.1.1.1).

Admi�edly, all of these features have appeared before in other programming

languages. What makes Dyna unique and interesting is that it is the first program-

ming language (to our knowledge) that combines all of these features at the same

time.

Furthermore, one of the core philosophies of the Dyna research project has been

that any program which is “syntactically valid” and “logically consistent” should

generally “just work”. This means that Dyna tries extremely hard to make programs

work even when other logic programming languages would result in an error or

non-termination with the same program (chapter §4).

I believe that the combination of features included in Dyna is a su�iciently

interesting challenge and demonstrates the main academic contributions of this

dissertation (which starts in chapter §5). Additionally, I will discuss in chapter §4

some of the challenges and speculate on the reasons why I believe that Dyna is the

only programming language to combine all of these features together at the same

time.

7At least more modern than when Logic Programming and Prolog first appeared in 1972 [38].

7

2.1 Dyna’s Roots in Logic Programming

Dyna builds on the foundation of Prolog [35, 38] and Datalog [30, 76, 82]—with any

Datalog or Prolog program also being a semantically valid8 Dyna program. Dyna

has a number of syntactic changes compared to Prolog/Datalog in an a�empt to

modernize logic programming and make it more palatable to developers familiar

with scripting languages (such as Python, commonly used in ML applications).

Dyna includes Prolog’s and Datalog’s notation, which makes it easy to express

constraints, don’t cares, unions, selections, and joins. For example, we can define a

user-defined term ‘a’ as the join of two relations ‘b’ and ‘c’.

1 a(I,K) :- b(I,J), c(J,K).

A logic program is a programming representation of a set or bag9 that contains

expressions that return true according to the program. For example, we might say

that a program is a function P that maps expressions, such as a(2,5), to the value

true or false depending on whether a(2,5) is contained in the program. For example,

we can say that the program defines the term a(2,5) if P(a(2,5)) returns true.

Similarly, it is sometimes useful to think of the program as a set/bag containing all

terms the program defines as true. In this case, we can write a(2,5) ∈ {t : P(t)},

where the set {t : P(t)} is defined using set-builder notation to contain all terms t

where the predicate P(t) returns true. For convenience, I will blur the distinction

between function P(·) and the set it defines and instead will write a(2,5) ∈ P .

When working with a logic program, we are not only interested in checking

whether a term such as a(2,5) is defined according to the program. Instead, we are

o�en interested in asking the program to fill in a templated expression that contains

variables with all assignments to the variables such that the expression returns

true under the function P . For example, if we query the program with “a(X,Y) ∈ P”,

the logic programming system will return a bag of all possible assignments to the

variables X and Y. E.g. {⟨X = 2,Y = 5⟩,⟨X = 7,Y = 12⟩, . . .}

To see how this actually works, let us work through a small Dyna program that

8Modulo syntactic di�erences. A Prolog/Datalog program would require some changes to match
Dyna’s syntax exactly. The internal representation of Dyna, described in chapter §5 is capable of
representing Prolog/Datalog programs.

9A bag can be thought of as a generalization of a set where an element can appear multiple
times. A bag will be defined properly in chapter §5.

8

has been adapted from commonly used logic programming examples:

2 % a number of facts about parent relationships

3 % this is parent(ParentName, ChildName).

4 parent("charles", "james").

5 parent("elizabeth", "james").

6 parent("james", "george").

7 parent("sophia", "george").

8 parent("sophia", "george").

9

10 % rules can combine facts as well as other rules

11 grandparent(X, Y) :- parent(X, Z), parent(Z, Y).

12 greatgrandparent(X, Y) :- grandparent(X, Z), parent(Z, Y).

13 married(X, Y) :- parent(X, Z), parent(Y, Z), X != Y.

14 related(X,X).

15 related(X,Y) :- related(X,Z), parent(Z,Y).

16 related(X,Y) :- parent(X,Z), related(Z,Y).

On lines 4 to 7 we define a number of parent-child facts. A fact is a rule without

any side conditions (expressions on the right-hand side of :-). A fact represents

a term that is true, and can be “looked up” in the program to check whether the

expression is true. It is appropriate to think of a fact in a logic program as the same

as inserting a tuple into a database table.10

Rules, such as those on lines 11 to 16, define terms in accordance with expressions

on the right-hand side of the aggregator :- which return true. For example, the

grandparent rule on line 11 combines the parent facts to define terms such as

grandparent("charles", "george"). A rule can be seen as similar to performing a

join in a database between relations.11 The expressions which are used to define

rules can reference the all user-defined terms, include all facts, other rule defined

terms, and even its own term as shown with related(·,·) on line 14 depending on

itself.

To interact with this program, a user of Dyna will make queries against the

program using the Dyna runtime, much like an SQL database. A query ends with a

question mark ‘?’ and will return the set of bindings to all variables in the expression.

10In the nomenclature of a SQL database, the declaration of a fact is equivalent to inserting a
tuple into the database. E.g.: INSERT INTO parent VALUES (’charles’, ’james’);

11In SQL, a rule definition would be equivalent to defining a view that will be computed on
demand from the defined facts. E.g.: CREATE VIEW grandparent AS SELECT a.parent, b.child

FROM parent a INNER JOIN parent b ON a.child = b.parent;

9

For example, using the program on lines 4 to 16, a user could make the following

queries:

17 grandparent("charles", X) ? % make a query against the Dyna program

18 ⟅⟨X="george"⟩⟆ % the result is returned as assignments to variables

19 parent("sophia", X) ?

20 ⟅⟨X="george"⟩⟆ % duplicates are combined

Note: On line 20 that the duplicate facts from line 7 and 8 is only returned to

the user returned once, rather than twice. This di�ers from what Prolog would do,

and the reason for this will be explained in section §2.2.

2.1.1 Structured Terms

While logic programming using only primitive types such as string and int in the pre-

vious section is su�icient to construct simple databases, where logic programming

really shines is when constructing more complicated structured terms. In Dyna, we

denote these structured terms using square brackets []12 as: termName[Argument1,

Argument2, . . ., ArgumentN]. Note that this syntax for structured terms is di�erent

from what has been used for years in Prolog and Datalog. I will discuss why we

have chosen to make these changes in section §2.2.1.

To see how structured terms can be used to revise our previous program, consider

the following example:

21 % facts represented as structured terms

22 people(person["james", 50, "charles", "elizabeth"]).

23 people(person["george", 10, "james", "sophia"]).

24

25 % extract information from the structured term

26 name(person[Name, Age, Father, Mother], Name).

27 parent(person[Name, Age, Father, Mother], Father).

28 parent(person[Name, Age, Father, Mother], Mother).

29

30 % return the names of all known people

31 names(Name) :- people(Person), name(Person, Name).

12Dyna also allows for an ampersand (&) to be used as a “quote” on a term as an alternate
way of writing this expression. E.g. &termName(Argument1,Argument2, . . .,ArgumentN) ≡
termName[Argument1,Argument2, . . .,ArgumentN].

10

On lines 22 and 23, we define two people using structured terms. We can get

the name of a person using a rule like line 26, which will select the first argument

that contains the name of the person. We can further make queries against this

program as follows:

32 people(Person), name(Person, "james"), parent(Person, Parent) ?

33 Results returned:

34 ⟅⟨Person=person["james",10,"charles","elizabeth"],Parent="charles"⟩,
35 ⟨Person=person["james",10,"charles","elizabeth"],Parent="elizabeth"⟩⟆

On line 32, we start with all of the people defined on lines 22 and 23, and

then we then filter the people, selecting only those with the name "james", using

name(Person, "james"). Finally, the parent rule is used to extract both the father

and mother fields from the structured term.

2.1.1.1 Builtin Structured Terms

Dyna additionally includes built-in structured terms for convenience. Following

Prolog’s design, Dyna includes a linked list that can be constructed using square

brackets ([]) when there is no term name (e.g. line 36). A vertical bar is used to

create a new list where one or more elements have been added to the head of the

linked list (e.g. lines 37 and 38). Recursive functions such as list_length (line 41)

can be used to scan through a linked list by accessing the first elements of the

linked list.

36 list = [1,2,3]. % Construct a list

37 list_prepend = [4 | list]. % The vertical bar is used to prepend or

38 list_remove = Rest for list = [Head|Rest]. % return the head and tail

39

40 % A recursive predicate defines ⟨list, length⟩ terms

41 list_length([], 0).

42 list_length([Head|Rest], N+1) :- list_length(Rest, N).

The equals sign on line 36 shows a major syntactic change from logic programming

in that terms have values. Line 36 defines the term list as having the value [1,2,3].

The body of a rule is defined by an expression that returns a value. For example, on

line 38, the expression ‘Rest for list = [Head|Rest]’ returns the value assigned

11

to the variable Rest when the expression ‘list = [Head|Rest]’ returns true.13

Furthermore, inspired by modern scripting languages that make extensive use

of associative maps, I have extended Dyna to also include support and syntax for

a built-in dictionary type14 (line 43). A dictionary can be constructed using curly

braces ({}). Similarly to linked lists, a vertical bar (line 52) is used to both access a

key in the dictionary (line 57) and add/remove keys from the dictionary (line 50).

43 person_dictionary_map = { % a dictionary

44 "Name" -> "james",

45 "Age" -> 50,

46 "Father" -> "charles",

47 "Mother" -> "elizabeth",

48 }.

49

50 person_with_address = { % new dictionary with keys added

51 "Address" -> "123 North st.",

52 | person_dictionary_map % the vertical bar is used to create a new

53 % dictionary with new elements added or existing elements

54 % removed, just like the linked list on lines 37 and 38

55 }.

56

57 name({Name | Rest}, Name). % The variable name can be used to...

58 name_alt({ "Name" -> Name | Rest}, Name). % match a key in the dictionary

59 get_item_by_key({Key -> Value | Rest}, Key, Value).

The ‘Key -> Value’15 pair in the dictionary can use any values in the Herbrand

universe. When adding a key to a dictionary, as on line 50 the key must not be

contained in the dictionary, otherwise the result of this expression will be null. The

reason is that when pulling a key out of the dictionary, as on line 57, will result in

that key not being contained in the dictionary represented by Rest, and we require

that all uses of an operator, such as the vertical bar, behave identically regardless

of how it is used (in this case to add or remove a key).

13The ‘for’ keyword will return the first sub-expression’s value with the second sub-expression
representing a side condition that must return the value true. The comma ‘,’ is conceptually
equivalent to ‘for’, but it returns the second sub-expression’s value and the first sub-expression
must return true. In other words, the expression ‘A for B’ is equivalent to the expression ‘B, A’.

14Future work may consider adding in syntax for other types, such as sets. However, sets can
be emulated using a map by using only the Key and se�ing a dummy value for all pairs, like:
{"X"->0, "Y"->0} .

15The notation ‘-> ’ was chosen to avoid conflicting with other syntax in the Dyna language.

12

2.2 Weighted Rules

As a Dyna extension to traditional logic programming, Dyna associates a value with

each term in the program. As such, we call rules Horn equations rather than Horn

clauses as in Prolog and Datalog. A Horn equation returns the value computed

from the expression in the equation (which appears on the le�-hand side of the

aggregator). Returning a value from terms moves Dyna from a logic programming

(which only returns true or null (undefined/false)) towards a functional program-

ming language. A single term in Dyna can have values contributed either from

a single rule or from a collection of di�erent rules. To handle this, we combine

the contributed values using an aggregator. An aggregator is an associative and

commutative binary operator wri�en between the head of the rule on the le�-hand

side and the body of the rule on the right-hand side. For example, the aggregator

‘+= ’ sum of all contributions, ‘max=’ selects the maximum contribution, and the

aggregator ‘:-’ that we have already seen checks that there is some expression that

returns true.

Using the ‘+= ’ aggregator, we can write a matrix multiplication between two

functors ‘b’ and ‘c’, which represent matrices as follows:

60 a(I,K) += b(I,J) * c(J,K).

Here, if we have the term b(2,8) = 3. and c(8,5) = 7., then this will define

a(2,5) = 21. One major di�erence between Dyna and other logic programming

languages is that aggregators such as ‘+= ’ combine all possible values—whereas

boolean logical aggregators such as ‘:-’16 can stop once it has found a proof that

a term is true. To illustrate this point, let us consider what happens if we add

rules b(2,9) = 11. and c(9,5) = 4 to our program. In this case, we will have that

a(2,5) = 65. which is the sum of 21 and 44. Conversely, if this was a logic program

as in section §2.1, then the value of a(2,5) already has been proven true by b(2,8)

and c(8,5), and defining new values for the terms b(2,9) and c(9,5) does not

change the truthfulness of a(2,5).

In addition to the sum aggregator, Dyna also includes other aggregators, which

are commonly found in AI and ML applications. This includes ‘min=’ and ‘max=’

which find the min or max value respectively. ‘*= ’ computes the product of the

16Prolog and Datalog are “allowed” to stop early, but the exact circumstances under which this
happens can di�er. See the discussion in the related work chapter for more information. §3

13

contributions much like ‘+= ’ computes the sum. ‘|=’ and ’&=’ compute the boolean

logical OR and logical AND between contributions. Dyna also includes a special

aggregator ‘:=’, which selects the value from the rule defined on the “last line” that

returns a non-null value. This allows us to define rules that override the value

returned by previously defined rules for a term.17 Finally, we have the aggregator

‘=’ which ensures there only one contributed value (otherwise it will error), and the

aggregator ‘?=’ which is allowed to arbitrarily pick any of the contributed values.18

19

To see how aggregation in logic programming can make expressing AI programs

easy, let us consider the task of computing the shortest path in a graph. On lines 62

and 63, we define a recursive rule to compute the path in a graph. The rule will

look for the minimum value associated with each node. We use the keyword arg20

to track the argument associated with the minimum value at each node.21 This, in

essence, tracks backpointers at every node in the graph with $arg(path(·)) being

equivalent to a mathematical expression using argmin.

61 % Horn equation defines how to compute path and tracks back edges

62 path(start) min= 0 arg [start].

63 path(X) min= edge(X,Y) + path(Y) arg [X | $arg(path(Y))].

64

65 % weighted facts define the edges in a graph

66 edge("bal", "nyc") = 200.

67 edge("dc" , "bal") = 20.

17The ‘:=’ aggregator accepts a special value of $null that can be returned by an expression to
make the result of ‘:=’ null, overriding other non-null contributions from earlier lines.

18Dyna is allowed to stop computation for a term’s value early once it has determined that the
value will not change further. This happens in the case of |=, &=, :- which have saturating
values of true, false, true. Aggregators like := can stop the computation of earlier lines in the
program if there is a value contributed from a line that occurs later. Similarly, ?= can stop all other
computations once it has found something.

19Each term in the program can only use a single aggregator otherwise the value is defined
to be an error. However, rules that define terms that share the same functor name can be
defined using di�erent aggregators. For example, we can write ‘a(X) += 2 for g(X).’ and
‘a(X) *= 7 for q(X).’ provided that g(X) and q(X) are non-overlapping.

20Previous Dyna papers have used the keyword with_key for this instead of the keyword arg.
The keyword with_key is still supported by the Dyna front-end parser.

21Internally, Dyna tracks this using a pair of values, which includes the argument and the value
returned. The Dyna implementation automatically references the value field by default or will
reference the argument field using the macro $arg(·) which suppresses the automatic access of
the value field.

14

68 edge("dc" , "nyc") = 300.

69 start = "nyc".

70

71 % assert22 checks the expression is true conditioned on the lines above

72 assert path("dc") = 220.

73 assert $arg(path("dc")) = ["dc", "bal", "nyc"].

2.2.1 Evaluation by Default

One of the major syntactic di�erences between Dyna and other logic programming

languages is that Dyna evaluates an expression in place by default. The reason

for this change is that most terms have23 a meaningful value, much like how a

function returns a value in a functional programming language. Conversely, in

logic programming languages such as Prolog or Datalog, terms only “return” the

value of true.

To see how this manifests, let us consider the program that computes sin(x)2 +

cos(x)2 wri�en in Dyna vs Prolog:

74 % Dyna rule for computing the trig function

75 trig(X) = sin(X)**2 + cos(X)**2.

76

77 % Prolog rule for computing the trig function

78 trig(X,Result) :- sin(X,S), pow(S,2,SS), cos(X,C), pow(C,2,CC),

79 Result $= SS + CC.24

22A Dyna program is declaritive in that defined rules can be rearranged and evaluated out of
order. A Dyna script may contain procedural statements such as assert and print, which evaluate
an expression with respect to the rules defined before the statement.

23There is a slight technicality here between “having” a value and “returning” a value. In
Dyna, the term is an identifier, and the Dyna program is the function that takes the term as
an argument and returns a value. In other words, in a functional language, you might have
“return_value = named_function(Arg1, Arg2)” whereas in Dyna we have “return_value
= dyna_program_function(named_term_identifier[Arg1, Arg2])” with the program itself
being the function.

15

In Prolog and other logic programming languages, whenever we want to get

the value from a term, we have to represent the returned value using an extra

argument such as S and C. The reason is that terms like sin(X,S) only “return”

true. Hence, it would be meaningless to write an expression like pow(sin(X),2) in

Prolog with evaluation by default, as it would be equivalent to pow(true,2). Instead,

Prolog chooses to use this syntax to represent structured terms (section §2.1.1), with

the expression pow(sin(X),2) being interpreted as pow(sin[X],2) which is at least

potentially meaningful as long as ‘pow’ is able to do something with the structured

term sin[X].

2.3 A User’s Interaction With Dyna

Dyna’s intended audience is ML and AI researchers. This means that Dyna is more

focused on expressing mathematical models quickly and ge�ing them to work.

Dyna also encourages interactive experimentation, which is useful when debugging

a ML model. Dyna also hopes to be a tool which complements existing tooling and

infrastructure used by ML researchers—it is unreasonable to expect Dyna to have a

thriving ecosystem on its own. As such, Dyna is designed to be used from a “driver”

program wri�en in another language.25 In this way, Dyna is similar to a database

where a program submits queries and updates to run against the Dyna program. As

such, Dyna provides a Read-Eval-Print-Loop (REPL) for interacting with the Dyna

system, as well as a Python and Java API.

24The $= is necessary in Prolog to represent a floating point addition constraint between the
floats SS, CC, and the Result variable. If this was wri�en with an equals sign only and without
the dollar sign, it would end up assigning the term '+'[SS,CC] (not the numerical value) to the
variable Result.
Alternately, Prolog has is which can be used to evaluate numerical expressions and could be used
as Result is SS + CC, but is will only evaluate the expression on the right-hand side and assign
it to the variable on the le�-hand side. In other words, in Prolog the following is expression would
result in an error: 5 is 2 + X.

25Prior work did include the idea that there would be a driver program querying and updating
the Dyna program [61]. However, the design of the interface detailed here is a contribution of this
dissertation.

16

2.3.1 Python API

Most ML and AI research is currently being done using Python. As such, we expect

that the Python API will be the way most users will interact with Dyna. The Java

API also provides the same interface as the Python API, so we will omit detailing

the Java API here.

Interacting with the Dyna system is similar to interacting with an in-memory

database (such as a SQL database). A new Dyna runtime instance is created using

the dyna.Dyna() method (line 82). Programs can be loaded into the Dyna runtime

using the run method (lines 84 and 92), passing either a string of code or a file

containing Dyna code. The defined rules and facts will persist between calls to the

run function, just like a database.

80 from dyna import Dyna

81

82 dyna_runtime = Dyna() # create a new instance of the Dyna runtime

83

84 dyna_runtime.run("""

85 factorial(N) := factorial(N-1) * N.

86 factorial(0) := 1.

87

88 print factorial(5). % prints 120

89 """)

90

91 # load rules from a file

92 dyna_runtime.run(open('dyna_program.dyna'))

The query method (line 93) is used to return the values that are calculated by

the Dyna program. We can return primitive types, such as numbers and strings, as

well as more complicated types, such as lists, dictionaries, and dynabases (objects

inside of Dyna, which will discussed further in chapter §13):

93 result = dyna_runtime.query("""

94 factorial(10)? % The first query

95 factorial(11)? % The second query

96

97 factorial_up_to(N) := [factorial(N) | factorial_up_to(N-1)].

98 factorial_up_to(0) := [].

99

100 factorial_up_to(5)? % Third query returns a list

17

101 """)

102

103 assert result[0] == 3628800 # the results of queries are returned

104 assert result[1] == 39916800

105 assert result[2] == [120, 24, 6, 2, 1]

Like SQL database APIs, Dyna supports query parameters for passing values into

Dyna without having to encode the value as a string. The query parameters are

denoted using a dollar sign followed by a number: $0, $1, $2 . . . $n. We can pass

any value into the Dyna runtime. When a value can be cast into Dyna’s Herbrand

universe then it is automatically cast and usable inside of Dyna. If a value cannot

be cast to Dyna, then it is passed around as an opaque pointer. This allows Dyna to

integrate with other Python libraries without having to support everything itself.

106 result = dyna_runtime.query("""

107 factorial($0)?

108 """, 5)

109

110 assert result[0] == 120

111

112 class MyClass: pass

113

114 dyna_runtime.run("""

115 class_reference = $0. % save a reference to the class

116 """, MyClass()).

117

118 result = dyna_runtime.query("""

119 class_reference?

120 """)

121

122 assert isinstance(result[0], MyClass)

Dyna’s Python API also supports defining external functions that can be called

from the Dyna program. This allows Dyna to leverage existing functions and

libraries without requiring all features to be fully reimplemented in Dyna. Unlike

withDyna terms, invoking an externally defined function requires that all arguments

have known values.26

26Externally defined functions must have unique names and cannot be combined with terms that
are defined by the Dyna program.

18

123 @dyna_runtime.define_function('my_function')

124 def my_function(a,b,c):

125 return a*3 + b*5 + c*11

126

127 dyna_runtime.run("""

128 assert my_function(1,2,3) == 1*3 + 2*5 + 3*11.

129 """)

As a more useful example of Dyna interacting with external datatypes, we can

leverage PyTorch’s [111] GPU tensors. Operations such as tensor multiplication

can be performed by calling back to external functions:

130 import torch

131

132 gpu_tensor = torch.tensor(...).cuda()

133

134 @dyna_runtime.define_function('tensor_multiply')

135 def tensor_multiply(A, B):

136 return A @ B

137

138 dyna_runtime.run("""

139 pytorch_tensor = $0.

140

141 tensor_squared = tensor_multiply(pytorch_tensor, pytorch_tensor).

142 """, gpu_tensor)

Currently, Dyna does not have built-in support for GPUs, so this approach can

at least serve as a “stop gap” for working with GPUs, which are critical for making

modern (neural) ML models e�icient. In section §16.7 I will discuss potential future

work to add native GPU support to Dyna.

2.3.2 Multi-file Programs

Just like other programming languages, Dyna has the ability to write a program

using multiple files and import the definitions across files.27

Terms in Dyna are scoped to the file in which they were defined. This means that

a term foo(X) defined in file a.dyna, will be di�erent from foo(X) in file b.dyna.

Terms can be imported from other files using import at the top of the file as follows:

27This is a contribution of this dissertation.

19

143 :- from "a.dyna" import foo/1.

Dyna also supports importing default terms that were declared as exported. This

way, they do not have to be explicitly listed when importing terms into another file.

144 % in file a.dyna

145 foo(X) = 123.

146 :- export foo/1.

147

148 % in file do_import.dyna

149 :- import "a.dyna".

150 assert foo(1) = 123. % use foo defined in file a.dyna

2.4 Invariance to Expression Order

One of the core principles of Dyna is that the way that a program is wri�en should

have as li�le impact as possible on how the program executes. The Dyna runtime is

required to find some solution to the equations/constraints wri�en, but otherwise,

it is flexible in how it executes a program. We hope that this approach will make it

easier for developers to write Dyna programs as they can focus on the “business

logic”28 of their ML/AI model while not having to worry about the internal state of

the Dyna program.

One way in which Dyna manifests this property is that Dyna is invariant to

the order in which expressions and most rules are defined in the program. In this

way, Dyna is closer to a constraint satisfaction engine than other logic programming

languages, which have a fixed execution order (section §3.1.1). For example, a well-

studied example Prolog program is computing the permutations of a list (lines 151

to 154). Following the mathematical definition of a permutation, given a list l and

the permutation p of list l, will have that l is also a permutation of the list p. E.g.

the list [1,3,2] is a permutation of [1,2,3] and vice-versa.

151 deleteone([X|Xs], Xs, X).

152 deleteone([X|Xs], [X|Ys], Z) :- deleteone(Xs, Ys, Z).

153 permute([], []).

154 permute(As, [Z|Bs]) :- deleteone(As, Rs, Z), permute(Rs, Bs).

155

28Business logic sometimes called domain-specific logic is the part of the program which encodes
rules which are relevant to the real world problem being solved.

20

156 permute([1,2,3], Out)? % works under backchaining (Prolog)

157 permute(Out, [1,2,3])? % does not work under backchaining

This program, when executed under Prolog’s fixed execution order, only line 156

will work, while line 157 will cause Prolog to get stuck in an infinite recursion. The

reason is that Prolog executes in a fixed le�-to-right, top-to-bo�om rule ordering.

As a result of this fixed order, when Prolog executes line 154, the call to deleteone

will be evaluated before the recursive call to permute is evaluated. This means that

the variables As and Rs will both be un-ground. This causes deleteone to enumerate

the infinite pairs of all lists where the list Rs will contain one less element that is

equal to Z.

Conversely, when this program is executed under Dyna, we do not commit to

execute the rules in any particular order. So, while Dyna runtime is allowed to

explore the deleteone function before As and Rs are grounded to specific values, it

does not commit to running the deleteone function before the permute function.

2.5 Fixed-Point Computations

Dyna is designed as a superset of Prolog and Datalog styles of logic programming.

Datalog’s execution strategy is notably di�erent from Prolog’s. A Prolog program is

executed using backward chaining. This means that Prolog starts with the expression

that it is trying to prove to be true and performs a depth-first search “backward”

looking for other rules and facts that support the expression it is trying to prove.

In contrast, Datalog operates via forward chaining. When Datalog starts, it looks

at all of the ground facts that are currently asserted by the program. Datalog will

then deduce new facts using the rules in the program.

158 a :- b. % a is true if b is true

159 b :- a. % b is true if a is true

160 c :- d. % c is true if d is true

161 a. % assert that a is true regardless

On line 161, we define the fact that the term a is true. Datalog using forward-

chaining will use line 159 to deduce that b is also true. Datalog will then stop process-

ing as there are no new rules which can be deduced as true.29 In this way, Datalog

29Note: the program on lines 158 to 161 will not execute under Prolog, as Prolog will get stuck
performing a depth-first search on lines 158 and 159.

21

has reached a fixed-point of the program where: PT = DeduceAllTrue(PT). Here,

we can think of the function DeduceAllTrue as taking the set of all terms in the

program Pt at time t , and computing a new set of terms Pt+1 at time t +1 which

includes the new terms which have also been deduced. Once no additional terms

are proven as true, the fixed-point condition is satisfied PT =DeduceAllTrue(PT).

As mentioned above, Dyna is a superset of Datalog’s fixed-point computation. As

such, Dyna also includes support for fixed-pointing weighted expressions (whereas

Datalog can only fix-point boolean values that are proven true). For example, we

can use a fixed point to solve the expression e = 1+e/2 by writing lines 162 to 163.

162 e += 1.

163 e += e/2.

Dyna will solve this program by first assigning the value of 1 to the term 1, and

then it will iterate line line 163 until it reaches numerical convergence.

The place where having fixed-point semantics is important is in the case of

cyclic programs, such as when representing a cycle on a graph. For example, when

computing the shortest path in a graph in section §2.2, we were only interested

in finding the minimum length to a given node in the graph. If we had a large

set of edges, it is likely it would have contained cycles and many alternate paths.

Furthermore, the fewest number of steps might not have been the cheapest path in

the graph. Hence, the value assigned to a node in the graph might change multiple

times during the program’s run.

Note: A fixed-point might not exist for a program, or there might exist multiple

di�erent fixed-points for a single program. For example, if we define that a term is

true if it is false, then the Dyna runtime can cycle forever, proving that ne is true,

and then switching back to ne is false:

164 ne :- not ne. % ne is true if ne is false

Datalog is able to reject programs like this due to stratification [30, 76], which

limits the kinds of programs supported by Datalog. Dyna does not limit programs

with stratification. Furthermore, Dyna programs are Turning complete (section

§15.2) so proving that a general program terminates or cycles is impossible.30

Furthermore, we can write a Dyna program which never repeats a state by writing

30This is the halting problem, which states that there exists a program for which we can not
prove or disprove that it terminates. This property is true for all Turing complete languages.

22

a non-terminating program that counts to infinity (lines 165 and 166), or has a

negative-weighted-cycle in the shortest path graph (e.g example line 62).

165 count_to_infinity += 1.

166 count_to_infinity += count_to_infinity.

As for programs that have multiple fixed-points, Dyna is only looking for an

assignment to all terms in the program that are consistent with all of the rules

that are defined.31 This means that it is possible to define a term that will take on

the value true or false, or even a term that can take on any value in the Herbrand

universe.

167 true_or_false :- true_or_false.

168 any_value = any_value.

In practice, if either of these terms are queried, they will return the result null

or undefined as there is no base case to their recursion. However, this behavior

should not be depended on as what value is returned by these kinds of expressions

should be treated as purposely underspecified behavior.

2.6 Non-ground Reasoning

As mentioned a few times already, Dyna is a superset of both Prolog and Datalog;

this means that it supports features of both languages at the same time. One

such feature is non-ground reasoning. Non-ground reasoning means that the value

assigned to a variable is not known at the time of execution. This technique is

most commonly associated with Prolog-style systems and is not supported at all

by Datalog. An example of non-ground reasoning would be an expression like:

169 a :- X > 5, X < 3.

Here, the value of a will be null, as there is no assignment to the variable X, which

is both greater than 5 and less than 3 at the same time. This reasoning can also be

applied across rules boundaries. For example, the following will still deduce that

the term a is false.

31When there are multiple solutions, Dyna is only required to find a solution. We make no
guarantees about which solution is returned. This is in contrast to Datalog, which guarantees that
the minimal solution is returned (section §3.1.2), and answer set programming, which returns all
solutions (section §3.1.6).

23

170 b(foo[Z]) :- Z > 5.

171 a :- b(foo[Y]), Y < 3.

What makes Dyna’s approach to non-ground reasoning more powerful than Pro-

log is that it is able to run non-ground reasoning while simultaneously performing

Datalog-style fixed-pointing. To see an example of what this means, let us modify

our shortest path program from line 62 to remove the hard-coded starting node

and turn it into the all-pairs shortest path program:

172 path(Start,X) min= edge(X,Y) + path(Start,Y).

173 path(Start,Start) min= 0.32

174

175 edge("bal", "nyc") = 200.

176 edge("nyc", "bal") = 180.

177 edge("dc" , "bal") = 20.

178 edge("dc" , "nyc") = 300.

Observe this program cannot be executed under Prolog-style backward-chaining

or Datalog-style forward-chaining. The reason that Prolog fails to execute this

program is that there exists a cycle in the edge graph ("bal"→"nyc"→"bal");

hence depth-first backwards-chaining would get stuck in a cycle. While Datalog

can handle the cycles in the program, it cannot support line 173, as Datalog does

not handle non-ground expressions like this.

2.7 Memoization, Dynamic Programming, and Re-
active Programming

One central feature in Dyna is support for memoization. Memoization essentially

is the act of replacing a compute operation in a program with a “recall from

memory” operation. For certain kinds of programs, this can have a significant

impact on the runtime of a program. For example, the Fibonacci sequence (line 179),

will take exponential time without memoization but can run in linear time when

memoization is enabled:

179 fib(0) += 0.

180 fib(1) += 1.

181 fib(N) += fib(N-1) for N > 1 ; % semicolon defines two rules at once

32This example, and specifically line 173, is discussed further in section §4.2.1.

24

182 fib(N-2) for N > 1. % when the head and aggregator are the same

183

184 print fib(10). % run in 177 operations without memoization

185

186 $memo(fib[N:$ground]) = "unk". % enable memoization for fib where N33

187 % must be a ground value (such as 0,1,2 etc)

188 print fib(10). % run in 10 operations with memoization

Memoization traditionally requires that the memoized result of a function does

not change. However, Dyna’s memoization implementation is reactive. Reactive

means that Dyna automatically tracks dependencies between anything that a

memoized value depends on, and that the memoized value will be recomputed or

updated if anything upstream is changed. The value assigned to a term by the

Dyna program can change as a result of the system converging towards final values

or as the result of the program being modified through the addition of new rules

or facts (e.g. line 97 in the Python API example, section §2.3.1).

This means that if some input to a currently memoized value changes, then any

dependent memoized values will also be updated. For example, if we modify the

definition of fib(3) by defining a new rule, this will cause all of the values of the

Fibonacci terms to change.

189 print fib(10). % print 55 using the existing memoized value

190 fib(3) += 1. % modify the definition of fib

191 print fib(10). % print 76 using the new modified version of fib

2.7.1 Prioritization of Updates

In a Dyna program, there are o�en many terms in the program that are memoized.

As a result, there can be many di�erent terms that have pending updates waiting

to be processed at any given point in time. However, the Dyna runtime cannot

process all updates simultaneously. Additionally, the order in which these updates

are processed can significantly impact the program’s overall runtime. To handle

these cases, we allow the user to specify a prioritization function that controls

the order in which updates can be processed. The definition of the prioritization

function does not impact the correctness of the program; however, a badly defined

prioritization function can cause the program to exhibit much worse runtime—for

33The $memo control mechanism for memoization is a contribution of this dissertation.

25

example, a badly defined prioritization function will cause the Fibonacci example

(line 179) to run in exponential time instead of linear.

A priority function is defined by defining a $priority term just like the $memo

show above.

192 $priority(fib[N]) = -N. % prioritize small values first (0,1,2 etc)

193 % this is the optimal prioritization function

194 % for fibonacci and runs in O(n)

195 $priority(fib[N]) = N. % prioritize large values first (10,9,8 etc)

The priority function will map a term to a number that is used as the priority.

Higher priorities will be run first.34 The priority function is computed only when

the pending update is created.35 This means that $priority should be considered a

meta-user-definable term used only to control the inner operations of the system

and is not like the other Dyna terms in the language, which can be updated

reactively.

2.7.2 Memoization with non-ground variables

Memoization in a logic programming language, such as Dyna, is not as simple as

memoizing the returned value. Instead, terms in logic programming languages

support being called in di�erent modes. A mode is the signature which a term

supports being “called” with in terms of which variables must be known ground

values in the Herbrand universe, and which variables are allowed to be free and

have an unknown, yet to be determined, value. We have already seen an example

of ground and free variables in the matrix multiplication example repeated here.

196 a(I,K) += b(I,J) * c(J,K).

Observe that the only constraints on the variable J are the terms b(I,J) and c(J,K).

This means that either ‘b’ or ‘c’ must allow for the variable J to be free. In which

case, that functor will be able to enumerate an upper bound on the domain of the

possible values for the variable J. And by extension, any memoized version of that

functor will also have to allow for the variable J to be free.

34The system internally uses the priority of 1016 for internal work, which should be run as soon
as possible, and −1016 for user updates when no $priority is set. The system does not prevent
you from se�ing a priority higher or lower than ±1016, but be aware of these internal values as
going higher or lower than ±1016 can have unforeseen consequences.

35Future work may wish to add the ability for $priority to handle updates.

26

To declare a policy for memoization, we use the declarations $free, $ground and

the meta-term $memo. When a variable is marked as $ground in a $memo policy, this

means that the value assigned to the variable must be known before we can even

check if there are any relevant memoized terms in the memo table. Similarly, $free

specifies that the variable’s value is allowed to be unknown and allows us to check

for matching terms in the memo table. Unlike with $ground, when a variable is

marked with $free the memo table will guarantee that all relevant terms will be

memoized.

For example, we can write a memo policy for the matrix example on line 196 as

follows:

197 $memo(b[I:$ground,J:$free]) = "null".

Here on line 197, we are specifying that the first variable I must be known before

we can check the memo table where we will find all of the relevant terms for

di�erent values of J. The $memo(·) returns the string "null" to indicate what is the

default value for the memoized b(·,·) terms. By stating "null", we declare that any

term not found in the memo table has the associated value null, and is therefore

undefined. Alternately, the $memo function can return "unk"36 to indicate that the

value for a term unknown and must be computed and should be saved into the

memo table, or it can return "none" to indicate that there is no value in the memo

table for a term and the value should not be saved into the memo table.37

2.8 Modern PL Constructions

Dyna’s syntax was primarily inspired by logic programming languages which date

back to the 1970s. Since then, more modern programming languages have been

adding syntactic sugar to make common operations easier to write. Dyna has

36The terminology of "null" vs. "unk" memos was adopted from Filardo and Eisner [67]—an
earlier research paper published by our group.

37An "unk" memo is shorthand for specifying the case where all arguments must be ground. For
example, the following policies are equivalent:
$memo(foo[X,Y:$ground,Z:$free]) = "unk". ≡
$memo(foo[X:$ground,Y:$ground,Z:$ground]) = "null". This is discussed in greater de-
tail in section §10.8.3.

27

followed suit and includes higher-order functions,38 lambda functions, and type

annotation.39

2.8.1 Higher-Order Functions

Dyna allows for “function pointers” to be passed around the runtime and for those

pointers to be used via indirect calls. This enables Dyna to support higher-order

functions. A function pointer in Dyna is represented using the same structured term

(section §2.1.1) that we have seen already. When an indirect call is performed, Dyna

looks up the user-defined term by name and passes any additional parameters. In

Dyna, user-defined terms are scoped to the file in which they were defined. This

means that there can potentially be many user-defined terms that share the same

name but are otherwise unrelated. To handle this, structured terms track which file

they were constructed in via additional hidden metadata. This metadata is only

used when an indirect call is performed. A structured term can also be scoped to a

dynabase (an object), allowing indirect calls to be performed against terms defined

on a dynabase object.

To make an indirect call in a higher-order function, we can simply use a variable

in place of the functor’s name as on line 198.40

198 perform_call(Calling) = Calling(1,2,3).

199 called(X,Y,Z) = X*Y + Z.

200 called(X,Y,Z,W) = X*Z + Y+W.

201

202 assert perform_call(called[]) = 1*2 + 3.

203 assert perform_call(called[4]) = 4*2 + 1*3. % curried functions can

204 % include extra parameters

More usefully, this can allow us to define higher-order functions such as map,

which applies a function to all elements in a list line 205.

38Admi�edly, Prolog included call/N, which supports higher-order functions, which have existed
since early version of Prolog. However, earlier versions and proposals of Dyna were Datalog-inspired
and did not include higher-order functions. Hence, the contribution of higher-order functions is
specifically to Dyna and its syntax and not a contribution to logic programming in general.

39The modern PL constructions implementation and their syntax are all contributions of this
dissertation work to the Dyna language.

40The indirect call can also use a expression, such as a call to another user-defined term. In
this case, extra parenthesis are needed around the expression returning the function pointer. E.g.
(foo(1,2))(4,5)

28

205 map(Func, []) = [].

206 map(Func, [X|Rest]) = [Func(X) | map(Func, Rest)].

207

208 assert map('*'[2], [1,2,3]) = [2,4,6].

2.8.2 Lambda functions

Dyna includes syntax for creating lambda functions. Lambda functions are given a

generated name and converted into a standard function like we have been writing

already. Given that lambda functions are the same as regular Dyna rules, this

means that we also define an aggregator and perform aggregation inside of the

lambda function. For example, if we want to create a function that takes the max

of two arguments, we can write: ((X, Y) max= X ; Y). The semicolon splits be-

tween di�erent body expressions, as was done on line 181. The outer parentheses

encapsulate the entire expression, with the first inner parentheses denoting addi-

tional arguments that can be passed to the lambda expression. If no arguments

are included, then the lambda is immediately evaluated in place. For example, we

can write X=5, Y = 7, 7 = (max= X; Y) where the variables X and Y are captured

in a closure, and then the expression is immediately evaluated using the max=

aggregator.

Together this can be combined with the higher-order-functions to write the

following expressions, which shows how these concepts can be syntactically com-

bined:

209 assert Seven=7, map(((Arg1) max= Seven; Arg1), [1,5,10]) = [7,7,10].

2.8.3 Type Declarations

Dyna includes support for adding type restrictions onto any expression in the

language. Type annotation is denoted using a colon followed by a term. For

example, the expression X:int, denotes that the variable X is of type int. The syntax

X:int adds the constraint int(X) into the body, where int(X) the same kind of call

to the int term that we have seen already. The di�erence with the colon expression

is that instead of returning the value of the int(X) call, this expression returns the

value of X. This means that we can easily annotate variables with types throughout

the program (e.g. line 213) and can define our own types (e.g. line 210).

29

210 my_custom_type(foo[X,Y:float,Z:int]) :- Y > Z % define a custom type

211 my_custom_type(bar[X:string]). % with side conditions

212

213 my_function(X: my_custom_type) = % check the type matches

Furthermore, we can use this approach to construct “templated” types. This

is accomplished by passing arguments to the term that appears a�er the colon.

The type-constrained variable is appended as the last argument. For example, a

templated list type can be defined as on line 214:

214 list(Type, []).

215 list(Type, [Head | Rest]) :- Type(Head), list(Type, Rest).

216

217 % Check the argument L matches a list of a particular type

218 list_of_my_type(L : list(my_custom_type[])) =

219 list_of_greater_than_5(L : list(((X) :- X > 5))) =

The ‘Type(Head)’ expression turns the list(·,·) term into a higher order function

which indirectly calls the term referenced by the variable Type on line 215

Union types can also be wri�en inline through the use of a vertical bar like

X:int|string. Conceptually, this is the same as defining a new term that a�empts

to match against int(X) or string(X) using the :- aggregator.41

2.8.3.1 Type Checking and Type Errors

In Dyna, “types” are not distinct from “normal” function calls. This is not a sig-

nificant issue, though, as in Dyna, the Dyna system is allowed to evaluate any

expression at any point. This means that the Dyna runtime is allowed to evaluate

expressions and function calls at “compile-time” if there is su�icient information

to deduce the resulting value of the expression. In other words, if we can statically

deduce the types, then it is possible to avoid the runtime overhead of performing

type checks. However, in the cases where there is a complicated type, the Dyna

runtime is allowed to perform runtime type checks as needed.

A consequence of this design is that Dyna does not have “type errors” that can be

41This is equivalent to defining a new int_or_string(X) term using two rules to create a union
type:
int_or_string(X) :- int(X).

int_or_string(X) :- string(X).

30

concisely reported to the user. Instead, Dyna can check and warn about dead code

which will never be evaluated under any circumstances. For example, the expression

5 < 3 is always returns false. Similarly, the expression int(X), string(X), which

places two incompatible type constraints on the variable X, hence this expression

will always return false and can be reported as a warning.42

2.9 Object-Oriented Programming (OOP) via Dyn-
abases

When building a larger, more complicated AI and ML system, it is necessary to

have some way to make smaller units that can be composed together. In most

programming languages, this is done via object-oriented programming (OOP) or

via modules (section §2.3.2). Dyna includes a prototype-based approach to object-

oriented programming we call dynabases. Dynabases are designed to resemble more

typical approaches to OOP, as in a procedural programming language. Dynabases

are denoted using curly braces {} with Dyna rules inside. The optional keyword

new can be used to syntactically distinguish between dictionaries (section §2.1.1.1)

and dynabases when needed. For example, we can define a simple Dynabase on

line 220.43

220 e = { count += 1.

221 count += 2. }.

222 assert e.count = 3.

We can also modify a dynabase a�er it has been created:

223 e.count += 3.

224 assert e.count = 6.

Dynabases can be duplicated as well as extended with additional rules by using

the keyword new. Rules defined in a dynabase can reference the dynabase itself

using the keyword $self.

42Warnings for dead code can only happen if Dyna can identify the dead code. In general, this is
tricky as identifying dead code is equivalent to just running the program. Furthermore, some code
might only be temporarily dead and become used when other rules are added to the program.

43There is currently disagreement among the Dyna team about the design of dynabases. It
is possible that a future implementation of Dyna will have dynabases that behave di�erently.
The design presented here is my own design and corresponds with how dynabases work in my
implementation.

31

225 copy_e = new e. % create a copy of a dynabase

226 extend_e = new e { % extend with additional rules

227 % $self44 is used to reference fields and functions on the dynabase

228 bar(X) = $self.foo * X.

229 }.

The extended and copied dynabases are distinct from their parent and can be

modified individually. However, changes to the parent dynabase are visible in the

children even a�er the children have been “created.” The reason for this is that

Dyna is declarative. Hence the order in which rules are defined does not impact

the expressions in the program. For example, we can define a new rule foo on the e

dynabase on line 230. This rule will be visible on all descendants dynabases, and

it is even possible that rules defined before foo was defined (line 228), can still

reference the definition of foo.

230 e.foo = 123. % define a new field foo on the parent

231 copy_e.count += 4.

232 assert copy_e.foo = 123. % the parent changes are visible in children

233 assert copy_e.count = 10. % existing rules are extended

234 assert extend_e.bar(2) = 123*2.

235 assert e.count = 6. % the parent is not impacted by children

2.9.1 Dynabases vs Procedural Programming OOP

As mentioned above, dynabases are a bit di�erent from classes in a procedural

programming language since Dyna is a declarative programming language that

can be evaluated out-of-order. Another di�erence between Dyna’s dynabases and

procedural programming’s OOP is that a dynabase might not actually be “created.”

To see what I mean by this, consider for a moment that due to aggregation, we can

compute the aggregated result of multiple contributions at the same time. In fact,

we can even combine an infinite number of expressions. As such, it is possible to

write a program where we create an infinite number of dynabases (e.g. lines 236

to 237).

236 return_dynabase(X,Y,Z) = { value = }.

237 result min= return_dynabase(X,Y,Z).value.

44$self’s behavior is similar to that of self in Python. $self is not required on the functor
name of defined rules (bar on line 228), but it is required inside of the expression that defines the
rule when referencing other terms defined on the dynabase.

32

We are able to handle programs with an “infinite” number of dynabases as long as

we are able to deduce some representation for the value term, which can be used

for solving the min= aggregator on line 237.

2.10 Embedded Domain Specific Languages

Support for Domain-Specific Languages (DSLs) is a useful feature for programming

languages to have as it enables library developers to support a wide variety of

di�erent problem domains. Early languages such as LISP were popular among

AI researchers in part for this reason. These days, ML researchers are clearly

demonstrating that they want access to DSLs despite the fact that Python (the

language that is o�en used for ML) does not easily support macros. This has led

libraries such as JAX [23] and PyTorch Script [2], which use Python’s reflection to

access and manipulate Python ASTs for a function. Given that Dyna is targeting

the same kinds of researchers, we believe having the ability to write macros to

transform Dyna’s AST before it is loaded and also use multiline strings as embedded

languages will allow for other languages to be embedded in a Dyna program.45

2.10.1 String DSLs

A multiline string in Dyna is escaped between the symbol ’{ and }. The string can

contain { and } as long as they are balanced. Furthermore, Dyna-style comments,

a percent sign % followed by a new line, are also stripped from the string. This is

done to encourage ’{} to be used to embed DSLs that have similar behavior to the

Dyna language. Furthermore, Dyna includes special syntactic handling inspired by

languages such as Ruby and Lua for passing a block of {} to a function. When {}

appears a�er a function call in any form (string, dictionary, or dynabase), it will

be passed as the last argument to the function. Together, this allows us to write a

program as follows for embedding a context-free grammar (line 238) and a linear

program (line 257):

45There are have other proposals from Dyna team about how DSLs could be implemented in
Dyna. The design here is my own design and a contribution of this dissertation.

33

238 my_grammar = grammar'{

239 S -> NP VP

240 NP -> Det N

241 NP -> NP PP

242 VP -> V NP

243 VP -> VP PP % inline dyna comments are removed

244 PP -> P NP % when converted to a string

245

246 NP -> Papa {} % balanced {} can be included in the string

247 N -> caviar

248 N -> spoon

249 V -> spoon

250 V -> ate

251 P -> with

252 Det -> the

253 Det -> a

254 }.

255

256 my_lp = solution[X,Y,Z,Objective]

257 for Objective = linear_program({X,Y,Z}) '{

258 Maximize % embed a linear program using the

259 obj: X - 2.3Y + 0.5Z % LP file format

260 Subject

261 c1: X - Y + S <= 10.75

262 -Z + 2X - S >= -100

263 }.

For grammar defined on line 238, the entire grammar from lines 238 to 253 is

passed to the grammar(·) term as its only argument. The grammar term can create

dynabase to represent the grammar. For the linear programming example, the

first argument to linear_program(·,·) is the dictionary {"X"->X, "Y"->Y, "Z"->Z}

and the second argument is the linear program represented as a string. The imple-

mentation of linear_program(·,·) is responsible for matching the linear program’s

variable names with the dictionary’s variable names.

2.10.2 Macros

Macros have access to the AST of the Dyna program. The Dyna AST is represented

using the same structured-term object that is passed around in Dyna programs.

34

This means that we can use the same pa�ern-matching tools that we presented

in section §2.1.1. Additionally, we have backtick ‘(), which is used to escape the

AST and embed variables used to match against part of the AST. In the following

example, on line 266, we match _ + 2 and replace it with _ + 3:46

264 :- macro my_macro/1.

265 my_macro(X) := X. % no change to AST if it does not match

266 my_macro(`(`X + 2)) := `(`X + 3). % change AST

267

268 f1(W) = my_macro(W + 1).

269 f2(W) = my_macro(W + 2).

270

271 assert f1(3) = 4.

272 assert f2(3) = 6.

More practically, macros could be used to implement symbolic auto di�erenti-

ation (just like JAX [23]), against the AST of a Dyna program. Line 273 shows a

conceptual example of how an automatic di�erentiated neural network could be

used in Dyna.47

273 network(InputMatrix) = auto_differentiate {

274 relu(X) max= X. % define a neural net unit using a dynabase

275 relu(X) max= 0.

276

277 layer1(I, J) = InputMatrix.elem(I, J).

278 layer2_input(I, J) += $self.layer1(I,K) * $self.weight(K, J).

279 layer2(I, J) = $self.relu($self.layer2_input(I,J)).

280 }.

281

282 gradient = network(...).gradient(...). % gradient term added via macro

The ‘.gradient’ term is added to the ‘network’ dynabase by the

auto_differentiate macro called on line 273.

46It is helpful to observe the Dyna AST when developing macros by running in the REPL: print
$ast’{ my_program = 1. }.

47The macro auto_differentiate is not implemented at this time. I suggest in section §16.2.1
that future work should consider implementing libraries like this in Dyna.

35

Chapter 3

Related Work

In this chapter, I will cover some related projects and programming languages and

how their implementations work. With the Dyna project, it is a bit di�icult to make

direct comparisons. The reason is that the Dyna language contains combinations of

features that are not entirely supported by other languages. A lot of the challenges

with Dyna have been a result of how features interact with each other, rather than

the addition of any individual features—this will be discussed further in chapter §4.

Further complicating this chapter, some of the systems/languages that I compare

against are not specific implementations but rather a large class of related systems—

for example, I will discuss SQL databases and how they relate to Dyna.

I note this chapter is focused on the implementation of similar declarative and

logic programming systems. This chapter is not intended as a tutorial on the

features or syntax of other systems. The reason for this is that, except for chapter

§2, this dissertation is focused on implementation and not the Dyna language itself.

I have a�empted to write the rest of this dissertation starting at chapter §5 with

few dependencies on this chapter, so this chapter can be skipped for those who are

only interested in the academic contributions of this dissertation.

3.1 Logic Programming Languages

We start with logic programming as exemplified by languages such as Prolog [9,

35, 38, 52, 101, 108, 132, 144, 147] and Datalog [30, 76, 119, 140].

36

Logic programming is commonly associated with the declarative programming

paradigm, where the programmer should only have to specifywhat, rather than how,

to perform a computation [100]. Unfortunately, in my opinion, logic programming

languages fail to deliver on being “truly” declarative, as I will show when discussing

how these languages work.

The way logic programming pursues its declarative goal is by defining a program

via logical clauses instead of procedural operations. The usual syntax is similar to

the syntax of Dyna that we saw in section §2.1. The only “aggregator” that logic

programming languages support is the :- aggregator, which is intended to look

like a backward implication symbol (⇐=). The head of the expression, or the part

to the le� of the :-, is the expression that we are trying to prove by depending on

the predicates that appear on the right-hand side of the :-.

283 a(X) :- b(X,Y), c(Y).

284 a(X) :- d(X).

Variables represented placeholder values, just like with Dyna.

The way in which logic programming languages “execute” di�ers greatly depend-

ing on the kind of logic programming language used. That said, one of our goals

with Dyna is to unify the two major approaches for executing logic programs. We

hope that our execution approach will simultaneously benefit from the advantages

both approaches have to o�er while minimizing their respective weaknesses.

3.1.1 Prolog Language

The oldest and most iconic family of logic programming languages is Prolog. For

reference, the first appearances of Prolog happened in 1972, the same year the C

programming language was developed [5, 35, 38, 144]. Over the years, there have

been countless implementations and extensions of the Prolog language [9, 21, 43,

52, 137, 144, 147, 152]. The diversity in Prolog implementations is not surprising

when one considers that a simple Prolog can be implemented in less than 200 lines

of code in a procedural programming language [137].

Prolog’s approach to execution certainly shows some taint of the limited memory

environment in which it was invented. In fact, writing a large Prolog program o�en

requires extensive knowledge of how the Prolog system executes a program.

37

Prolog searches for the existence of a proof, utilizing a greedy backtracking-

based search method. The way this works is that Prolog searches through declared

predicates in a top-to-bo�om, le�-to-right order, using unification [102] to check

if the current assignment to variables is consistent. As long as the current partial

assignment is consistent, Prolog continues to expand the program. When Prolog

eventually reaches the “end” of unification, it returns the value “true” (typically

printed as “yes”) to the user as well as the assignment to variables.

To make this description more concrete, consider the program in figure 3-1.

285 a(X) :- X = 0.

286 a(1). % conceptually equivalent to line 285, instead with 1 instead of 0

287 a(2).

288 a(3).

289 a(4).

290 a(5).

291 a(6).

292 a(7).

293 a(8).

294 a(9).

295 b(A,B,C,D,E,F,G,H,I,J) :- a(A), a(B), a(C), a(D), a(E),

296 a(F), a(G), a(H), a(I), a(J).

Figure 3-1. Simple Prolog/Datalog Program used to illustrate the di�erences in
language execution. This program defines a/148as true for the integer values of 0-9,
lines 285 to 294, and b/10 as true for all terms between 0000000000 and 9999999999.

If we query b(A,B,C,D,E,F,G,H,I,J) on line 295, then the Prolog engine returns

a lazy stream of bindings to the variables A,B,C,D,E,F,G,H,I,J. A binding is the

current assignment to the variable. A binding can be either a ground value (such

as the number 0, 1, 2 etc.), another variable, or a structure (such as in section

§2.1.1). The Prolog engine searches for a binding to all variables, which is consistent

with the rules of the program. It does this by expanding rules in the standardized

le�-to-right, top-to-bo�om evaluation order. In the case of a/1 and b/10, it starts

by expanding b/10, where it encounters the first clause a(A). Then it will unify the

48Prolog systems will usually refer to rules using their name and arity (number of arguments). In
this case, a/1 refers to the ‘a’ rule defined on lines 285 to 294.

38

variable A with the variable X on line 285. At this point, neither the variable A nor X

has any ground value assigned to it. The Prolog engine continues to evaluate the

program in its le�-to-right order and encounters X=0 on line 285. This causes the

Prolog engine to assign the value 0 to X, which causes the value of A to also be set

to 0 as a result of the previous unification between A and X. Because there are no

more clauses on line 285, the Prolog engine returns control flow back to line 295

where a(B) will then be evaluated, and so on. However, before this return of control

flow occurs, the Prolog engine marks a point in its execution, which is used for

backtracking.

Once the Prolog engine has reached the end of line 296, it will return the

current binding to the caller of b/10. In this case, it was called from the top-

level user query, so the assignment A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0 is

returned to the user. If we ask the Prolog engine for the next assignment, then

it will go to its stack of backtracking locations and pop the most recent loca-

tion. In this case, it would be where J is assigned the value 0. The engine then

advances to the next disjunctive branch of a/1, in this case line 286, assigning

the value 1 to J. Again, there are no more conditions on line 286 or line 296

which need to be handled, so the new binding is returned to the user, which is

now A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=1. This process will continue until

A=9,B=9,C=9,D=9,E=9,F=9,G=9,H=9,I=9,J=9, at which point there are no more pos-

sible bindings to consider for the variables A–J.

This procedure is conceptually quite simple and has the advantage of only using

a limited amount of memory—it only requires storage for the current assignments

of the variables and records of where branching decisions were made so it can

backtrack. Unfortunately, writing good Prolog programs requires that the pro-

grammer think about how the Prolog engine works, and therefore is not entirely

“declarative”.

For example, suppose that we want to use b/10 to query if there is an integer

where the second digit is larger than the first digit, e.g., a number like 0100000000.

This can be done using something like line 297:

39

297 c :- b(A,B,C,D,E,F,G,H,I,J), A < B.

Figure 3-2. Checking if there is a number where the second digit is greater than
the first digit. For example, something like 0100000000.

Now, line 297 does “work”; however, it is extremely ine�icient. The Prolog engine

always evaluates le�-to-right, which means that it creates a complete assignment

to the variables A–J before it checks A < B. This means that Prolog loops through

108 combinations before finding an assignment that satisfies A < B.

Ideally, we would like to intermix the checking of A < B with the assignment

to variables A and B. Thankfully, modern Prolog implementations have a solution

to this. Prolog (with a CLP extension, section §3.1.5) allows tracking of delayed

constraints, which are constraints (like A < B) that cannot be immediately evaluated.

These constraints are conceptually similar to the A=X constraint that was caused by

the unification on line 285. However, these constraints are “more powerful” in that

instead of depending on manipulation of pointers in internal data structures (see

Martelli and Montanari [102]), these constraints are allowed to define their own

arbitrary code for handling when a variable’s state is modified.

Now, when using delayed constraints, we must still remember that Prolog

evaluates le�-to-right, as adding the delayed constraint a�er b/10 does not help:

298 d :- A #< B, b(A,B,C,D,E,F,G,H,I,J).

Figure 3-3. Delayed Constraint in Prolog. Delayed constraints are annotated using
a hash symbol #. [9, 147]

The way that A #< B works is that it is saved as a delayed constraint into the

constraint store, or program’s state (which previously only held variable binding),

and will run the #< code anytime that A or B is “modified”. This means that when B

is assigned the value 0, and A already has the value 0 assigned, it will quickly fail

the check of A #< B, causing the Prolog engine to immediately backtrack.49

Now, this is great! But there is still some behavior that is a bit “annoying” (and

49I should note that unification is usually presented as working with structured terms (as in
section §2.1.1) instead of delayed constraints on numerical values.

40

also di�ers from Dyna’s approach). If we query for ‘d’, the Prolog engine will quickly

prove it is true but returns a lazy stream that keeps returning solutions. In other

words, rather than finding one solution to prove ‘d’, the Prolog engine enumerates

all 45 ∗ 108 proofs of ‘d’. This happens because every time that we ask for the

next item in the lazy stream of solutions, Prolog simply backtracks to the previous

variable, even if the returned solution (that ‘d’ is true) is identical to the previously

returned solution. This di�ers from Dyna, which would only return ‘d’ is true once

due to the aggregation performed by :- over all of the answers.

To fix this, we can use a cut in Prolog, which prevents the Prolog engine from

backtracking over di�erent assignments to variables. A cut in Prolog is annotated

with an exclamation mark ‘!’.

299 e :- A #< B, b(A,B,C,D,E,F,G,H,I,J), !.

Figure 3-4. Adding a cut to avoid backtracking through all possible assignments.

Now the ‘e’ rule will only find one solution and return true one time.

This again shows how Prolog programmers need to be aware of how the Prolog

engine works internally to make their programs work well. Conversely, Dyna’s is

designed to not need operations such as cut. We believe that aggregators such as

:- and ?= provide su�icient mechanisms for handling these cases.

3.1.1.1 Infinite Relations in Prolog

Prolog treats unification between variables as a first-class built-in operation. This

means that expressions such as X=Y are handled without backtracking over possible

assignments to X or Y. This is achieved by tracking which variables are unified

together by essentially updating the internal pointers backing X and Y so that

the space in memory reserved for holding the value of X and Y become the same

space [102]. This also extends to structural terms. So unification like X=g(Y,7)50

are handled in a similar way.

50The notation Y=g(X,X) is how Prolog does structural terms (section §2.1.1). Prolog does not
have automatic evaluation, as we have in Dyna. Hence, Prolog uses parenthesis () for both calls
and unification with structures.

41

This approach lets the Prolog engine work even when there are infinite relations

by tracking “constraints” and leaving the exact value of some variable as unknown.

Therefore, the extension ofmodern Prologwith delayed constraints (as in figure 3-

3) can be seen as an extension of unification from tracking only variable unification

via pointer reassignments to allowing arbitrary code to run when a variable’s

“unification status” is changed.

300 f(X,Y) :- Y=g(X,7,V), V #= X + 3.

Figure 3-5. An example infinite relation in Prolog. f(X,Y) does not require any back-
tracking to evaluate. It will define an infinite number of terms like f(1,g(1,7,4).

3.1.2 Datalog Language

Datalog is the other major approach to logic programming [30, 76] and was the

primary inspiration for Dyna 1.0 [60, 61]. A short description of how Datalog works

is that it uses the same high-level syntax as Prolog for dynamic programming [18]

over a boolean semiring.51 Let us break this down a li�le. Datalog’s approach can

be summarized as, the Datalog engine stores all true facts. A Datalog fact is a

statement that is known to be true and is represented as an term (without any

variables). For example, a(1) is a fact, but a(X) is not a fact as it contains the

variable X.

Datalog uses the rules in the program and all the stored facts to deduce new

facts—storing those as well. A Datalog engine finishes running when the deduced

facts are “stabled”—meaning that it has reached a fixed point, just like Dyna section

§2.5. Because everything is stored, this creates di�erent kinds of opportunities for

how to execute a Datalog program.

First, because everything is stored, this means that even simple programs can

cause a Datalog system to be quite ine�icient. For example, figure 3-1 would end

up storing 1010 facts in memory to represent b/10. The simplicity of Datalog means

it does not have a mechanism to e�iciently represent this program.

Conversely, having a simple “store everything” approach does have some ad-

vantages. For example, Datalog systems will o�en employ a host of e�icient join

51See footnote 3 for an explanation Semirings.

42

techniques as in a database system (e.g. [106]). Datalog can also employ brute

force strategies such as “loop over everything” and be guaranteed that these strate-

gies terminate. The reason is that a Datalog program can only represent finite

relations.52 Being finite is both part of Datalog’s design but also follows as a result

of Datalog storing all facts, and computers have a finite amount of storage. Hence,

there can only be a finite amount of facts stored.

3.1.3 Datalog is Breath First, Prolog is Depth First

Another advantage of Datalog’s approach is that it avoids Prolog’s greedy search

behavior. For example, in the following program:

301 h :- h.

302 h :- true.

Figure 3-6. Datalog program which deduces that ‘h’ is true due to line 302.

Datalog easily deduces that ‘h’ is true due to line line 302. Once ‘h’ is stored in

memory, the Datalog system does not get stuck handling line 301 and can easily

solve this program. Whereas, Prolog gets stuck on this program. The reason is that

Prolog would backtrack through line 301 and reencounter ‘h’ endlessly, without ever

a�empting to run line 302, due to Prolog’s top-to-bo�om, le�-to-right evaluation

order.

In this way, we can roughly think of Datalog’s approach as breath-first evaluating

of logic programs while Prolog is depth-first evaluation. Both of these languages

exhibit the relative advantages and disadvantages of these breath vs depth first

search: memory overhead, robustness to search order, complexity of internal state

(with unified variables in Prolog), etc. In Dyna, we are essentially looking to combine

the best of both Datalog and Prolog. We want to avoid cases where a bad execution

order causes the system to not terminate or be ine�icient. We also want to be able

to store deduced facts (like Datalog), while still representing infinite relations (like

Prolog).

52This means that there are no infinite relations like in Prolog.

43

3.1.4 Aggregation in Logic Programming

In Dyna, a central feature is aggregation, which appears everywhere throughout a

Dyna program and is built into the Dyna syntax (section §2.2). Both Datalog and

Prolog “support” aggregation, though their implementations are less flexible than

Dyna’s aggregation and it is essentially bolted on. The way aggregation has been

implemented is by adding “meta predicates” that internally perform the operation

of aggregation. In Prolog, this might look something like figure 3-7:

303 j(X,AggResult) :- bagof(InputToAggregator,

304 body_getting_aggregated(X,InputToAggregator),

305 AggList),

306 sumlist(AggList,AggResult).

307 body_getting_aggregated(1,1).

308 body_getting_aggregated(1,2).

309 body_getting_aggregated(1,1).

Figure 3-7. Aggregation supported by Prolog53

Here bagof/3 will collect all of the assignments to InputToAggregator into a list

AggList.

Evaluation of bagof/3 requires that all possible assignments to

body_getting_aggregated/2 are completed before bagof/3 “returns”. This pre-

vents any opportunity to make the aggregator more e�icient, as we will see later

in section §6.5 with Dyna.

Note that line 307 and line 309 both assert that 1,1 is true. As a result, the

aggregation from Prolog will give a di�erent result than Datalog. In Prolog, it

will count the number of times that something has been deduced. In this case

with Prolog, we will have ‘AggList= [1,2,1]’. However, with Datalog, we get

‘AggList= [1,2]’, since the second number 1 was already deduced and not counted

a second time.

53 Documentation about Prolog’s meta predicates that enable aggregation: https:

//www.eclipseclp.org/doc/bips/kernel/allsols/bagof-3.html https://www.swi-prolog.

org/pldoc/man?predicate=bagof/3 https://eclipseclp.org/doc/bips/lib/fd_global/

sumlist-2.html

Documentation for aggregation in Datalog: https://souffle-lang.github.io/aggregates

44

https://www.eclipseclp.org/doc/bips/kernel/allsols/bagof-3.html
https://www.eclipseclp.org/doc/bips/kernel/allsols/bagof-3.html
https://www.swi-prolog.org/pldoc/man?predicate=bagof/3
https://www.swi-prolog.org/pldoc/man?predicate=bagof/3
https://eclipseclp.org/doc/bips/lib/fd_global/sumlist-2.html
https://eclipseclp.org/doc/bips/lib/fd_global/sumlist-2.html
https://souffle-lang.github.io/aggregates

3.1.5 Constraint Logic Programming

Constraint Logic Programming (CLP) is a derivative of Prolog-style logic program-

ming. As we already saw in figure 3-3, a delayed constraint is an expression that

cannot be immediately evaluated. These constraints are stored in a constraint

store, alongside unifications between variables. Constraints are re-evaluated when

variables are assigned. Constraints can also interact with other constraints to infer

new constraints through propagation [72].

For example, if we have ‘j’ defined on line 310:

310 j :- A #> 5, B #= A - 2, B #< 0.

Figure 3-8. The variable A, must be some value greater than 5, and B must be less
than 0. Additionally, we have that B = A-2, hence there is no valid assignment to
both A and B.

Then there is no possible way to assign A and B such that ‘j’ is true. This program

can be handled by CLP using interval constraints. First, A #> 5 will track that Amust

have a value greater than 5 (the interval (5,∞)). Next, the constraint B #= A - 2

identifies that B is two less than A, therefore, it will have an interval of greater than

3 associated with it (the interval (3,∞)). Finally, the constraint B #< 0will associate

an interval of less than 0, which does not overlap with the greater than 3 interval

((−∞,0)∩ (3,∞) = /0). Hence, the CLP engine initiates Prolog-style backtracking,

removing constraints and unifications from the constraint store.

To make CLP work, a CLP system will have hundreds of di�erent propagation

and simplification rules. These rules are sometimes called Constraint Handling

Rules, usually referred to as CHR [72]. Development of new CHRs and ways to

implement CHRs has been an area of research over the years [72, 105, 118, 131].

Some of the rewrite rules presented in chapter §6 are similar to the rules found in

CHR [72].

3.1.5.1 MiniKanren

MiniKanren [27, 71] was designed as a small implementation of logic programming

that can be implemented in less than 200 lines of Scheme. As a result of MiniKan-

45

ren’s small core, it has been the basis for much research on logic programming over

the years [28, 91]. MiniKanren’s approach to logic programming di�ers from Prolog

in that it does not mutate any global data structures state54 but instead returns lazy

streams of binding states. Each operation is implemented as a function that modi-

fies the maps from a stream of bindings to a new binding, returning no elements in

the event that there is an inconsistency between the variable bindings [26].

The approach taken by miniKanren is similar to our approach in that we are

going to avoid mutating global state (like Prolog); however, we do not depend on

passing the host’s language functions around (like miniKanren) and instead will

develop an explicit relational expression representation (R-exprs in chapter §5). This

will allow us to be more flexible with the kinds of mutations and expressions that

we can represent and to have more flexibility in picking the order of evaluation.

3.1.6 Constraint Satisfaction Programming

Constraint satisfaction-based solving techniques, such as SMT solvers [15, 16, 47,

48, 50, 107] or answer set programming [64, 79] work by representing a problem as

variables and constraints between variables. These systems will o�en have some

ability to handle “function calls” by expanding the function up to some depth.55

The representation of a problem is then translated into a mathematical theory that

can be solved. For example, the SMT formalism to multiple calls to a modified SAT

solver [16]. These approaches have the advantage of residing on the foundation of

a sound mathematical theory. It is possible that we could solve Dyna programs

the same way. However, we have opted not to take this approach. The reason is

that we do not believe that it will work well with the kinds of problems we are

interested in. The kinds of Dyna programs we expect will realistically have many

more variables than can be realistically solved using these kinds of approaches.56

Instead, we have opted for a fixed-point based solving technique, which will iterate

until a solution is found (section §2.5).

54On the contrary, in Prolog the unifications between variables are tracked globally and main-
tained using stack discipline when Prolog backtracks in the case of failure.

55When the expanded version of the program is greater than the max depth needed to represent
all function calls in the program, then the solver is able to represent all intermediate values that the
program would compute inside of the solver.

56As approaches that are built on SAT solving can take an exponential amount of time to solve.

46

3.2 Probabilistic Programming

Dyna is technically not a probabilistic programming language, though it is frequently

compared to probabilistic programming languages.

A probabilistic program assigns probabilities to di�erent assignments of the

variables [29, 37, 65, 81, 112, 138, 139]. In some ways, we can think of this as a

generalization of logic programming, which only assigns true or false with being

able to assign factional chances of being true. At a high level, the probability is

similar to Dyna’s ability to weigh the result from a rule and combine them with an

aggregator (section §2.2). However, the di�erence is that Dyna allows for general

weights, which might not be a probability, and probabilistic programming requires

that the weights be probabilities. Because probabilistic programming works with

a more restricted problem, they will o�en provide features that are useful for

modeling probabilities. For example, probabilistic programming systems have the

ability to fit parameters to observed data.57

Like Dyna, probabilistic programming systems are usually not complete lan-

guages but are either embedded as a DSL or used as a library from a driver program

like Dyna (as in section §2.3.1).

3.3 Relational Algebra

In chapter §5, I will go into detail about how we use a relational algebra we call

R-exprs to model and implement the Dyna programming language. Chapter §5

will provide an introduction to relational algebra, so here, I will instead focus on

surveying related work that uses a relational algebra.

The most iconic systems that are built on a relational algebra are SQL58 database

systems [36, 44]. A SQL database consists of database tables and is queried using

SQL queries. Relations in a database are represented by database tables. Tables are

combined (intersected or unioned) with other tables, filtered for particular values,

and projected to select for a subset of the database table. The result is represented

57It is conceptually possible that Dyna could add these features in the future as DSL in Dyna (e.g.
section §2.10).

58SQL: Structured�ery Language

47

as another database relation. The relation can be either returned to the user (as

in the case of a query), saved back into the database as a new relation, or further

extended and used as a component of a larger query. An example SQL query is

shown in figure 3-9:

311 SELECT column_a, column_b, column_c ▷Select columns using projection

312 FROM table_1

313 JOIN table_2 on table_1.column_a = table_2.column_f ▷Intersect relations
314 WHERE column_d = 'identifier_1' and table_2.column_e > 11 ▷Filter

(a) SQL

315 result(A,B,C) :- table_1(A,B,C,'identifier_1'), % filter with value

316 table_2(E,A), % intersect by reuse of var A

317 E > 11. % filter as external constraint

(b) Equivalent Dyna

Figure 3-9. Example SQL query

Internally, SQL databases work over finite materialized relations. The relations

provide internal APIs to access the underlying data. This can include filtering using

a particular key or looping over all tuples in the relation using an iterator [134].

Database systems include query optimizers that rearrange operations in the query

to automatically figure out the most e�icient way to run queries.59

Just like Dyna, SQL supports aggregation and grouping [46, 83, 98]. In both SQL

and Dyna, aggregation is represented as reducing a relation into another equivalent

relation with the result of aggregation. An example is shown in figure 3-10.

318 SELECT column_a, sum(column_b)

319 FROM table_1

320 GROUP BY column_a

(a) SQL

321 result(A) += B for table_1(A,B,C,D).

(b) Equivalent Dyna

Figure 3-10. Example SQL with aggregation and GROUP BY.

59Dyna can also reorder operations, like a database (section §2.4). At this time, Dyna does not
include an optimizer that finds the best way to arrange computation, but this is proposed as future
work (section §16.4).

48

3.4 Term rewriting

Term rewriting [10, 12, 13, 17, 32–34, 51, 77, 78, 93, 94, 114, 143] is a central idea

used in this dissertation (chapters 5 and 6). Essentially, given an expression or

term, it is rewri�en into an semantically equivalent representation. This rewriting

process corresponds with execution of the program. For example, if we have the

term 2+3 it can be rewri�en as 5, which is semantically equivalent and represents

the evaluation of the plus sign.

The abstraction of term rewriting is too broad to completely cover, so I will

instead focus on a few subtopics that are related to the ideas explored in this

dissertation.

3.4.1 Implementation of Term Rewriting

A term rewriting system is defined using both the structure being rewri�en and the

rewrite rules performed against the structure. In this dissertation, I will create our

own implementation of term rewriting based on the rewrite rules that we defined

(chapters 8 and 11). While creating a term rewriting system from scratch is entirely

reasonable, there are frameworks such as maude [33, 34] or k-framework [114]

that create an implementation from the definition of rewrite rules only. As will be

discussed in chapter §8, the reason that we choose to create our own “rewriting

framework” for Dyna, rather than using an existing framework, is that the way in

which we apply rewrite rules di�ers from what existing frameworks are designed

to support. The existing frameworks are designed to support procedural languages,

where the order of execution is deterministic. Therefore, they only have to match

their rewrite rules against the next instruction to execute. Conversely, in Dyna, our

execution is non-deterministic, and we implement this by allowing any applicable

rewrite rule to match any part of the term.

3.4.2 Term Rewriting a Relational Algebra for Logic Program-
ming

Term rewriting on top of a relational algebra for the implementation of logic pro-

gramming has been experimented with before: Arias et al. [10], Bellia and Occhiuto

49

[17], Gallego Arias et al. [77, 78]. Bellia and Occhiuto [17] was the first that we are

aware of to make the connection in 1993, they created a “variable free”60 representa-

tion of logic programming they called c-expressions. They also identified that their

relational algebra representation can be manipulated with rewrite rules, as we will

do in chapter §6. Arias et al. [10], Gallego Arias et al. [77, 78] is an ongoing project

which also uses a term rewriting-based formalism to implement logic programming.

Like [17], their systems is focused on logic programming and does not support

aggregation as we do with Dyna.

3.4.3 Functional Logic Programming

Dyna started as an extension of Datalog and has added features of Prolog and

eventually added enough features to (in my opinion) be comparable to functional

programming.61 As such, I think that functional logic programming languages and

the version of Dyna in this dissertation share a number of similarities.

The space of functional logic programming has been around for several years,

with a journal running from 1995 to 2008 [3] and at least two other programming

language research projects in this space: the Curry language (Antoy [6], Antoy

et al. [7], Antoy and Hanus [8], Braßel et al. [24], Hanus [84, 85], Hanus et al.

[86, 87], Hanus and Prehofer [88], Hanus and Sadre [89]) and Verse language being

developed at Epic games (Augustsson et al. [11]). Both Curry and Verse are Haskell-

esque languages with the addition of logic programming features. The major

addition to functional programming is the ability to represent non-deterministic

results from functions and assignments to variables. For example, a function can

be called when its arguments’ values are unknown, and only the return value is

known. This is just like logic programming, which allows arguments to functions

to be variables with unknown values.

The formalism for these languages is done using term rewriting, just like I do

in this dissertation. There are two approaches to handling the non-determinism:

60Their “variable free” representation the integer index in a tuple to replace the variable name.
We choose to use a name-based representation as we believe it is cleaner, section §5.1.1.

61The version of Dyna in this dissertation supports higher-order functions, lambdas, closures,
lazy evaluation, immutable data structures such as hash maps, and the standard logic programming
lists and structured terms. User-defined rules are side-e�ect-free and have a functional dependency
between the arguments to the rule and the value returned from the aggregator.

50

narrowing and delayed evaluation62 (as we see later in this dissertation).

The term Narrowing refers to the idea of representing a program as a set of

equations with variables whose value is unknown and then solving those equations.

Narrowing does not refer to a specific strategy for solving the equations, but there

has been work on developing narrowing strategies for di�erent classes of equations

and for more e�icient search strategies [6, 7, 85, 88].

3.5 Memoization & Reactive

A long review of what memoization is can be found in section §10.1.

Memoization is the programming technique of saving the result of some com-

putation and reusing it later rather than recomputing it every time [104]. The

simplistic view of memoization requires that memoized computation is functional

and unchanging so that the stored result does not have to be invalidated later.

This can be fixed by making a computation reactive, upstream dependencies for

any memoized value are tracked, and whenever there is a change, all downstream

dependents are recomputed [14]. (The exact details of how reactive programming

is implemented di�er greatly between implementations.)

In the context of logic programming, languages such as Datalog (section §3.1.2)

are entirely based on memoization, with everything stored instead of “calling a

function to perform computation”. XSB is an extension of Prolog which adds mem-

oization [135, 145, 151]. XSB works by placing markers on terms that are expanded

during backtracking. If a cycle is detected during backtracking, it memoizes that

the term where the cycle is detected is memoized as false. If something is later

deduced as true later in the computation, it triggers recomputation.

Prior work from the Dyna project has also focused on developing a formalism

for memoization and reactive programming: Filardo [66], Filardo and Eisner [67].

This work sought to formalize programs as “computational circuits” where the

memoized values are vertices in a graph and edges in the graph track computation

dependencies. A vocabulary of di�erent message types that can be passed along

the edges was developed that corresponds to di�erent kinds of implementations

of reactive programming. For example, there are di�erent options around how

62Also called residuation in Antoy [6].

51

the recomputation is scheduled and when changes are visible to downstream

dependents.

3.6 Tracing JIT Compilation

In chapter §12, I will discuss my e�orts to compile Dyna to make it run faster. Our

compilation method is inspired by traced-based JIT compilation [31, 74, 75] and will

also make use of partial evaluation [42, 57, 73, 116, 149]. Trace-based JITting is a

very flexible technique for implementing a JIT compiler has been previously used on

the first JavaScript JIT compilers [74], the PyPy Python JIT [20], LuaJIT [109], the

TorchScript for neural PyTorch models [2], and even Prolog [21].63 Tracing di�ers

frommethod at a time compilation in that instead of compiling methods that appear

in the program, it compiles a sequence of steps performed when executing the

program. When there is a conditional branch in the program, the tracing compiler

inserts a check that the conditional branches the same way each time. The JIT

compiler will insert a stub that is used to resume the trace, and only when the

branch is actually taken does it generate the code.

To see how trace-based JIT compilation works, let us work through an example

of compiling the program presented in figure 3-11 using tracing. This program

starts with ExampleFunction and uses the MyPrint function to indirect to the

built-in Print call.

63Prolog has also been compiled using method-based compilation with research projects such as
the YAP compiler [43] and the Mercury project [39].

52

1: function ExampleFunction(n)
2: for i ∈ [0,n) :
3: if i < 5 :
4: MyPrint(“hello”)
5: else if i > 10000000000 :
6: MyPrint(“never”)
7: else
8: MyPrint(“world”)

9: MyPrint(“done”)
10: return
11: function MyPrint(x)
12: Print(“something ” + x)

Figure 3-11. Example function ge�ing traced

When we generate a trace of figure 3-11 in figure 3-12, observe that we have not

generated all of the code from figure 3-11. Instead, we have some lines that are

marked “not yet generated”. These lines of code contain su�icient metadata and

jump statements to get back into the JIT compiler to resume tracing.

1: i← 0

2: if i≥ n : ▷ Condition to check

3: not yet generated

4: if i≥ 5 : ▷ Condition to check

5: not yet generated

6: if i > 10000000000 :
7: not yet generated

8: Print(“something hello”) ▷ The MyPrint function is embedded

9: i← i+1

10: goto 2 ▷ Return to top of loop

Figure 3-12. First generated version of the function ExampleFunction from figure 3-
11 using tracing.

Observe that the trace has stopped with line 10. The reason is that when trac-

ing, the control flow has jumped back to a location in the code that has already

53

been generated. Therefore, the tracer compiler will generate the equivalent jump

statement to the previously generated statement. Furthermore, observe that the

function MyPrint does not appear in the generated output of figure 3-12. The

reason is that the trace only contains useful operations, such as incrementing the

variable i and calling the built-in Print, but the user’s function MyPrint simply

gets “absorbed” in by the processes of tracing.64

As the program continues to run, it will eventually hit one of the “not yet gener-

ated” branches, and it will update jump statements and generate additional code

as in figure 3-13.

1: i← 0

2: if i≥ n : ▷ Condition to check

3: not yet generated

4: if i≥ 5 : ▷ Updated to branch to newly generated code

5: goto 13

6: if i > 10000000000 :
7: not yet generated

8: Print(“something hello”)
9: i← i+1

10: goto 2
11:

12: ▷ Additional compilation to fill in code from line 5

13: Print(“something world”)
14: i← i+1

15: goto 2

Figure 3-13. A�er the first “not yet generated” branch has been hit and additional
code has been added.

This process of running the generated code and replacing the “not yet generated”

branches with generated code will continue. Eventually, the program is done

and will hit the return statement, as in figure 3-14. Not all parts of the program

have been executed, so there are parts of the generated code that contain “not yet

64In a dynamic language like Javascript or Python, the trace may include a check that theMyPrint
function was not redefined.

54

generated” on some branches.

1: i← 0

2: if i≥ n :
3: goto 18

4: if i≥ 5 :
5: goto 13

6: if i > 10000000000 :
7: not yet generated

8: Print(“something hello”)
9: i← i+1

10: goto 2
11:

12: ▷ Additional compilation to fill in code from line 5

13: Print(“something world”)
14: i← i+1

15: goto 2
16:

17: ▷ Additional compilation to fill in code from line 3

18: Print(“something done”)
19: return ▷ Generate return to caller code

Figure 3-14. The program has ended as it hits the return statement. Not all
branches of the code have been hit, so there can still be un-generated parts of the
compiled code.

55

Chapter 4

Challenges in Dyna

Usually the design and implementation of a programming language are done at the

same time. This means that di�icult-to-implement features and combinations of

features are frequently le� out of programming languages. Dyna did not have this

luxury. Dyna’s design was proposed in 2011 by Eisner and Filardo [59] without an

implementation.65 Furthermore, the long-term vision for the Dyna project is that

all programs that are “conceptually sound” (as read by a human, not a computer)

and describe the programmer’s intent (in a declarative way) should “just work”. A

more formal way of stating this vision would be to say, “all syntactically correct

programs which pass some elementary level of type checking should ‘work’ and

return some ‘useful’ result to the user when queried”.

Now, this vision is an amazing pitch. Nevertheless, it certainly complicates

Dyna’s implementation. For instance, this vision does not provide us with any

insight into the methods to use for Dyna’s implementation. However, we can

reject many previous approaches to logic programming implementation, as they

are incapable of supporting Dyna’s vision.

My intention in this chapter is to provide you, the reader, with an understanding

of our motivation before I subject you to hundreds of pages about implementation.

Note: I am not selling the vision of Dyna—this dissertation is about implementation.

I consider the vision of Dyna prior work published in 2011. I encourage anyone

interested in more details on this vision to read the original 2011 paper by Eisner

65There have been some syntactic changes to Dyna since 2011. None of those changes has made
the language simpler.

56

and Filardo [59]. Additionally, I will state that the implementation presented in this

dissertation does not completely deliver on Dyna’s vision—there exist syntactically

correct and conceptually sound programs that we currently cannot run. However,

it is our belief that the techniques presented in this dissertation provide a su�icient

foundation for Dyna, such that the vision of Dyna can be approached “in the limit”

with additional work and features being added.

4.1 Features in Dyna

We start by looking at the features that Dyna supports and how this compares to

other declarative frameworks, as shown in table 4-I.

A high-level outline of features supported by Dyna, as compared to other declar-

ative frameworks, is shown in table 4-I. A high-level description for each feature is

as follows:

• Finite — All systems are able to define finite relations. By finite, we mean that

the set of all declared entries is finite |{· · ·}|< ∞. For example, the integers

between 0 and 10 is a finite set |{1,2,3,4,5,6,7,8,9}| < ∞. Conversely, an

example of a non-finite relation would be all natural numbers as |N| ̸< ∞.

Only supporting finite means that simple strategies that enumerate every-

thing are workable. The reason is that brute force strategies are guaranteed

to terminate. Because of the termination guarantee, it makes it easier to

experiment with di�erent execution orders in finite systems without worrying

about secondary non-termination issues.

• Deductive — Deductive means that the system deduces new facts in the

language. In logic programming, this is represented as:

322 deduced :- requirement_1, requirement_2.

Logic programming languages, such as Prolog and Datalog, are both deductive,

whereas languages such as SQL are generally not considered deductive. The

SQL language does not automatically perform inferences for new entries in

the database tables, though this can be added manually through the use of

database triggers.

57

Feature
SQL
§3.3

Datalog
§3.1.2

Prolog
§3.1.1

CLP
§3.1.5

Probabilistic
Programming
§3.2

SMT
§3.1.6

Dyna 1.0
[60]

Dyna 2.0 (This
dissertation)
§2

Finite ! ! ! ! ! ! ! !

Deductive % ! ! ! ≈ ≈ ! !

Updatable ! ! ! ! ! ! !

Semiring Weighted % % % % ≈ % ! !

General Weighted % % % % % % % !

Aggregation ! % §3.1.4 % §3.1.4 % ! % [50] ! !

Memoization ! ! % [135] % % % ! !

Turing Complete % % ! ! % ≈ ! !

Unconstrained
Execution Order

! ! % ≈ % ! ! !

Constraints % % % ! % ! % !

Object Oriented % % % [49, 146] % % % % !

Syntactic Sugar % ≈ % !

Table 4-I. Di�erent Declarative Programming Languages (Paradigms) compared by feature. The definitions
for the features are given on the next page. This table represents what is most commonly associated with a
particular programming paradigm. References are included in the table when some further research has been
done to add a particular feature.

58

• Updatable — If the program or data can be changed a�er the program has

started running. Most of the systems in table 4-I provide some kind of REPL

where they can be started and maintain state between interactions.

• Weighted — Every expression in the system has a weight. Logic programming

languages only have the single weight of true. Some probabilistic program-

ming languages associate a probability with every expression in the system

in the case that the language is semiring based (e.g. [65]). Other probabilistic

programming languages will randomly sample results from the program and

compute the probability for each result depending on how probabilistic factors

were used in the execution of the program (e.g. [29, 81, 138]). This allows a

probabilistic programming language to represent a result as being 50%

Dyna allows for a value to be associated with every expression. The value is

not required to be a numerical value or even a probability.

• Aggregation — Dyna and SQL build aggregation into the language as a

central feature. Logic programming with Prolog or Datalog does technically

support aggregation as shown in section §3.1.4, but the syntax is generally

quite awkward and there are many footguns66, in that using the aggregation

feature can result in unexpected behavior, as previously described.

• Memoization — If there is a mechanism to avoid performing the same com-

putation multiple times. This is admi�edly more of an implementation feature

than a language feature. However, the design of the language does (usually)

influence the implementation.

Datalog and SQL materialize the result of all intermediate computations and

hence are entirely memoized. Prolog generally does not perform memoization

at all, but there are some extensions that add memoization (see [135, 145, 151]).

The Dyna implementation supports memoization as a central feature, section

§2.7 and chapter §10.

• Turing Complete — Many declarative programming frameworks are not

Turing-complete, such as SQL and Datalog. The reason for this is that these

66A footgun is a bad feature which is easy to misuse and very likely to give surprising results in
“common” use cases.

59

systems instead prioritize termination guarantees, making it easier to rear-

range operations/optimize database queries.

Some SMT solvers are also Turing-complete despite the fact that they inter-

nally reduce their computation to SAT solving, which is not Turing-complete.

The reason is that SMT solvers a�empt many reductions, increasing the size

without bounds until a solution is found.

• Unconstrained Execution Order — Reordering expressions in a language

provides optimization opportunities. SQL is well known for having a query

optimizer that a�empts to figure out the best order to run operations and

perform joins between database tables. Advanced Datalog systems will also

reorder operations for be�er performance. As stated before, Prolog does not

allow for automatic reordering of the expressions (section §3.1.1). SMT achieves

out-of-order execution and Turing completeness by reducing to a SAT solver,

which internally can perform the out-of-order evaluation.

• Constraints — Constraints are logical expressions that can be combined

together. SQL, Datalog, and Prolog are generally not considered to have con-

straints, the logic expressions are evaluated immediately when encountered,

though SQL and Datalog do allow query optimizers to reorder expressions

before execution starts. In the previous chapter (section §3.1.5), we mostly

focused on constraint logic programming (CLP), which is the extension to

Prolog that allows for delayed constraints.

• Object Oriented — Most declarative frameworks do not support object-

oriented programming. This is a feature that has been added to Dyna (section

§2.9). The complication here is that the standard approaches to object-oriented

programming are procedural (such as set field on an object, and call function

which mutates fields on the object) and do not work well in a declarative

paradigm.

• Syntactic Sugar — Dyna aims to be a more modern programming language

with the addition of syntactic sugar. For example, we have built-in notation

for aggregators, dynabases, lambda functions, etc. The other languages in this

table are either Prolog-style or SQL, which do not have this level of syntactic

sugar. Admi�edly, this does not increase the complexity of implementation

60

too much as this is entirely handled by the front-end parser, which is scarcely

mentioned in this dissertation.

4.2 Examples of Di�icult Programs

To illustrate some of these features of Dyna and how their combination can make

executing programs di�icult, let us take a look at a few example programs.

4.2.1 All Pairs Shortest Path

The first program is the all-pairs shortest path in a directed graph program, which

previously appeared in section §2.6. Each edge of the graph is defined using an

edge rule, whose values (weight) is the length of the edge. By construction, we

have for any Start and End, such that there exists a path between Start and End,

the value of path(Start,End) is the length of the shortest path.

323 path(Start,Start) min= 0. % base case

324 path(Start,End) min= path(Start,Mid) + edge(Mid,End). % recursive case

325 edge("baltimore", "washington dc") = 38. % example rules for edges

326 edge("baltimore", "new york") = 195.

327 · · · · · · · · · · · · % many other edge rules omitted

This program is not a valid Datalog program and is also likely to not termi-

nate when evaluated under Prolog. The reason why this is not Datalog is that

line 323 defines an infinite relation, which is not allowed under Datalog. For ex-

ample, the distance between path("does not exist", "does not exist") is 0 due

to line 323. This line can be modified to work with Datalog by changing it to

‘path(Start,Start) min= 0 for city(Start).’ in which case ‘city(Start)’ ensures

that the set of starting locations are all valid city names. However, this does change

the semantics of the program as path("does not exist", "does not exist") changes

from the value of 0 to no longer being defined or null.

A Prolog-style backtracking solver allows Start to be an unknown value and

would a�empt to answer queries using its depth-first backward chaining strat-

egy. Unfortunately, Prolog’s strategy would recurse forever due to line 324 even

on the query path("atlantis","baltimore"). The reason is that path("atlantis",

61

"baltimore") would recursively depend on path("atlantis",Y), which would re-

curse to itself. Prolog essentially gets stuck and never evaluates edge(Mid,End).

This example perfectly demonstrates the limitations of Datalog and Prolog, as the

query path("atlantis","baltimore")? can be easily recognized by a human as the

shortest path in a graph between two cities. Even the query path("atlantis",Y)?

can be recognized as a single-source shortest path problem and can be solved using

Dijkstra’s algorithm [53]. A human programmer can also identify that the query

path(X,Y)? is solvable using Bellman-Ford [19, 69] and augmenting the returned

pairs of city distance with path(Start,Start) min= 0.

Our challenge with Dyna is to design a system that is able to handle the fact

that Start is a variable while still avoiding the complications of cycles. Furthermore,

we would like to recover the e�icient strategies of Bellman-Ford or Dijkstra’s when

evaluating path(X,Y).67

4.2.2 “Infinite” Neural Network

Our second example program was wri�en on a whim for our 2017 paper [142] as

a natural example Dyna program, and we did not even realize that it is a di�icult

program to execute until we analyzed this program at a later date. This program

(lines 328 to 337), defines a two-dimensional convolutional neural network.

328 σ(X) = 1/(1+exp(-X)). % define sigmoid function for all X

329 in(J) += out(I) * edge(I,J). % vector-matrix product

330 out(J) += σ(in(J)). % activation of node J

331 out(input[X,Y]) += pixel_brightness(X,Y). % activation for input nodes

332 loss += (out(J) - target(J))**2. % L2 loss of the predictions

333 edge(input[X,Y],hidden[X+DX,Y+DY]) = weight_conv(DX,DY). % layer 1

334 edge(hidden[XX,YY],output[Prop])=weight_output(XX,YY,Prop). % layer 2

335 weight_conv(DX,DY) := random(*,-1,1) % init with random

336 for range(DX,-4,4), range(DY,-4,4).

337 weight_output(XX,YY,Property) := random(*,-1,1).

67One approach for solving the shortest path would be to wait until the value of Start is known,
and then start forward chaining the values for the paths. This corresponds to using the memoization
policy of
$memo(path[Start:$ground,X:$free]) = "null".

We can further implement Dijkstra’s by ordering the shortest distances first using
$priority(path[Start,X]) = -path(Start,X).

62

The input to the neural network is pixel_brightness(X,Y) on line 331, and could

be defined as a real number between 0 and 1, for example. Lines 328 to 330

define a feed-forward neural network where each neuron in the neural network is

defined by a ground value. For example, we can have neurons named input[12,34],

hidden[14,31] or even output["kitten"]. The output activation, out(J), of neuron

‘J’ is calculated as a sigmoid linear combination of the activations of other neurons

‘I’. An interesting facet of this example is that lines 328 to 330 does not define

the topology of the neural network. Instead, the topology is entirely determined

by edge(X,Y), which is defined on lines 333 to 337. Specifically, in this example,

hidden(XX,YY) is activated by the 9×9 square of neurons centered at input(XX,YY).

Then, for each image property, Prop, all hidden units are pooled to activate the

output unit, output(Prop), whose activation represents the degree to which the

image is predicted to have that property.

For a given finite image input, this program defines a neural network with

finitely many edges. Nevertheless, it is di�icult to solve this system of equations

using standard strategies. The di�iculty arises from line 333. Using a Datalog’s

forward-chaining strategy, the value for weight_conv(2,-3) would forward-chain

through line 333, which establishes values for infinitely many edges of the form

edge(input(X,Y),hidden(XX,YY)) where XX = X+2 and YY = Y−3, despite the fact

that only a finite number of edges are used for a given finite image. Conversely,

using a Prolog style backwards-chaining with queries like out(output["kitten"])

would lead to an internal query like edge(I,hidden[XX,YY]) with free variables XX

and YY. That query must return the entire infinite set of input-to-hidden edges,

even though for a given finite image, only finitely many of these edges will touch

input units that actually have values. This does not work.

To handle this program, we need to represent the infinite relation of edge(X,Y)

without having to enumerate all of the edges with a lazy iterator or having to

materialize all of the edges in a table.

4.2.3 “Infinitely” Many Dynabases

This was already mentioned in section §2.9.1, but Dyna’s object-oriented program-

ming cannot directly adapt the existing techniques. The reason is that we can

easily write a program where there is an infinite number of objects. For example,

63

lines 338 to 341 defines a program that computes argmin
x

x2.

338 a(X: float) = {

339 value = X**2.

340 }.

341 best_X = $arg((min= a(X).value arg X)).

Line 338 defines a dynabase to represent an input to the function ge�ing opti-

mized. In the “constructor” to the dynabase, it takes the current location where

the function is being evaluated. Conceptually, line 338 defines an infinite number

of dynabases, as it is defined for all real numbers.

If we have a system that must fully evaluate a subset of the program at a time,

then this is impossible to solve. To handle this program, we must represent the

entire program symbolically at the same time. In this case, we can recognize the

dynabase as a layer of abstraction and can solve the expression argminxx2 using

any number of optimization techniques.

4.2.4 “Infinite” Identity Matrix

Another common issue with Dyna programs is that the details that are useful for

running the program are not included in the source code. Recall, at the start of this

chapter, Dyna’s stated goal is that a program that is understandable by humans

(not computers) should “just work”.

A small example of this is an “infinite” identity matrix:

342 identity_matrix = new matrix {

343 elem(X,Y) := 0.

344 elem(X,X) := 1.

345 }.

Here, we are defining that any element in the matrix such that both of its first

and second argument are the same will have a value 1 (line 344), and 0 otherwise

(line 343).

This matrix could be used with other matrices. For example, we can define a

matrix multiplication on line 353:

346 matrix = new {

347 row(X) :- $self.elem(X,_).

348 rows += 1 for $self.row(_).

64

349 col(Y) :- $self.elem(_,Y).

350 cols += 1 for $self.col(_).

351 }.

352

353 multiply_matrices(A,B) = new matrix {

354 elem(I,K) += A.elem(I,J) * B.elem(J,K).

355 }.

356

357 result = multiply_matrices(identity_matrix, some_other_matrix).

This matrix representation is understandable by humans and even has some

nice properties. For example, we are not required to use numerical integers as the

identifies for the rows and columns. For example, we could have a row identified

by the structured term noun["kitten"], and the code continues to work.

However, this code has some di�iculties when trying to design execution strate-

gies. For starters, we do not know the number of rows and columns of the identity

matrix. In this case, the programmer forgot to inform us that identity matrices

are square matrices. As such, if the query ‘result.rows?’ is a�empted, we can not

use any information available from the some_other_matrix on line 357 to compute

this query. Now, as long as the Dyna program does not need to know the value of

‘result.rows’, then this is not a problem.

4.3 A Common Theme

All of these hard examples that can work share a common theme. There exists a

subset of the program that is insu�icient to run it. A naive representation—such as

Datalog’s materialize everything or Prolog lazy bindings to variables—is insu�icient

when trying to “greedily” evaluate the program, one subset at a time. We need to

be able to represent a subset of the program, even when it cannot be evaluated.

Once there is enough information, there needs to be some approach to apply the

relevant strategies to run the program.

We will develop the necessary techniques in chapters 5 and 6.

65

Chapter 5

Relational Expressions for
Logic programming

In this chapter, I introduce our relational expression notation, which we shorten

to R-exprs. This chapter is one of the central contributions of this dissertation

and was originally introduced in Francis-Landau et al. [70]. R-exprs is our internal

representation, and is used to represent and execute Dyna programs. R-exprs

represent both functions—much like how bytecode is the internal representation

in procedural programming languages—and bag relations—much like a database

table. In essence, we will use R-exprs to represent both code and data (e.g. section

§5.1.1).

As we will see throughout this dissertation, the homogeneity of R-exprs allows

the Dyna runtime to be flexible, as yet-to-be-evaluated “delayed” code is stored

alongside data. This turns out to be necessary to handle a number of tricky programs

(chapter §4).

In the remainder of this chapter, I will define the semantic interpretation of

R-exprs. In chapter §7, I will show how Dyna programs can be converted into the

R-expr representation. Then in chapters 6 and 8, I will discuss how R-exprs are used

to execute programs using term rewriting. In chapters 10 to 12, I will address some

of the challenges of using a term rewriting system to implement a programming

language.

66

5.1 Representing Programs Using Bags

Before discussing our bag-relational algebra in the next section, let us review bag

algebras and look at a few high-level examples.

A bag is a generalization of a set with elements in the bag being counted one

or more times. Bags are wri�en using ⟅ · · ·⟆. We refer to the number of times an

element appears in a bag asmultiplicity, and we will denote it using an at-sign @.

As an example, a bag containing four, two-element tuples, where only two of which

are distinct, looks like:

⟅⟨1,2⟩@1,⟨3,4⟩@3⟆ (5.1)

where ⟨1,2⟩ is contained once, and ⟨3,4⟩ is contained three times.

5.1.1 Bags of Named Tuples

When representing programs, we o�en have dozens of variables in an expression.

Hence, the above notation with values in a tuple marked by their index becomes

cumbersome. Instead, from this point forward, we will use bags over named-tuples

with bindings to variables. For example:

⟅⟨X = 1,Y = 2⟩@1,⟨X = 3,Y = 4⟩@3⟆ (5.2)

is the same as the expression before, but we have now denoted the first variable as

X and the second variable as Y.

For our purposes, we say that bags represent relations over all variables, not just

the variables explicitly mentioned. Any variable that is not explicitly mentioned is

considered to as taking on “any/all” values:

⟅⟨X = 1⟩@1⟆≡ ⟅⟨X = 1,Y⟩@1 : Y ∈ G⟆ (5.3)

At first, this might appear a bit awkward, however, this is useful when we are

combining multiple bags together using intersection ×∩ and union +∪. For example,

consider the intersection between two bags with di�erent variables:

⟅⟨X = 1⟩@2⟆×∩⟅⟨Y = 4⟩@3⟆≡ ⟅⟨X = 1,Y = 4⟩@6⟆ (5.4)

67

Observe, with bag intersection ×∩, the resulting bag is both the intersection of the

bags and the product of the multiplicities. Note, we do not have a min multiplicity

R-expr.68 The reason is that we want to count the number of ways a tuple is

contained in the bag. The counts of the number of times a tuple is in the bag is

used by the aggregators (section §5.2.2.10).

In example 5.4, the variables were di�erent, so the intersection only appears as

a tuple that contains the assignments to both X and Y. However, the power of bag

intersection is that it checks the consistency between tuples contained in the bag.

For example, in example 5.5, we have that the variable X appears in both bags that

we are intersecting:

⟅⟨X = 1⟩@7,⟨X = 3⟩@5⟆×∩⟅⟨X = 3,Y = 11⟩@2⟆≡ ⟅⟨X = 3,Y = 11⟩@10⟆ (5.5)

The assignment ⟨X = 1⟩ is incompatible with the second bag, hence it is eliminated

by the bag intersection.

Bag union +∪ behaves similarly to bag intersection. Tuples that are compatible

with each other have their multiplicities added together. Incompatible tuples

behave as independent elements, appearing as their own elements in the resulting

bag.

⟅⟨X = 1⟩@1,⟨X = 2⟩@2,⟆+∪⟅⟨X = 1⟩@3,⟨Y = 2⟩@9⟆

≡ ⟅⟨X = 1⟩@4,⟨X = 2⟩@2,⟨Y = 2⟩@9⟆
(5.6)

5.1.2 Representations of Constraints in Bags

To make bags useful for representing computation, we extend our bag notation

with a “bag-builder” notation. This bag-builder notation is conceptually similar to

set-builder69 notation where a set is defined using a boolean predicate. However,

68Min multiplicity is sometimes used by other bag algebras for intersection.
69For example, in set builder notation, the set of even integers could be wri�en as {x ∈ Z : ∃y ∈

Z,y∗2 = x}, where the boolean predicate ∃y ∈ Z,y∗2 = x is only true for even integers. Note, when
creating sets using an enumerable expression (iterable) in a program, this is called set comprehension.
However, in mathematics (as we are doing here) this is called set-builder notation. The predicate
that defines the set is not required to be computable. For example, we can use set-builder notation
to define the set of all people you have met and will ever meet in your life. This set is well defined,
but not something that we can express or construct in an executable program without also inventing
a time machine.

68

bags associate a positive multiplicity with each element in the bag instead of the

boolean true. This means that our bag-builder notation will return a nonnegative

integer which represents the number of times in which a named-tuple is contained

in the bag.

As an example, let us define the bag that contains all values assigned to the

variable X that are less than the number 5:

⟅⟨X⟩@c : c =

{
1 if X < 5

0 otherwise
⟆ (5.7)

Here, c is the variable that correspondswith themultiplicity of the tuple ⟨X⟩ for some

value of X. The multiplicity is computed using the expression

{
1 if X < 5

0 otherwise
which returns 1 if it is contained in the bag, and 0 otherwise.

As in section §5.1.1, we can intersect bags to create composite expressions.

For example, we can represent bag of integers between [0,5) by intersecting the

constraints for X ∈ Z,X ≥ 0,X < 5:

⟅⟨X⟩@c : c =

{
1 if X ∈ Z

0 otherwise
⟆

×∩⟅⟨X⟩@c : c =

{
1 if X ≥ 0

0 otherwise
⟆

×∩⟅⟨X⟩@c : c =

{
1 if X < 5

0 otherwise
⟆

(5.8)

5.1.3 A First Step Towards Computation with Bags

Equation (5.8) above has 3 di�erent constraints represented with bag-builder nota-

tion. This expression is perfectly acceptable and is something that we are capable

of handling and representing in our Dyna implementation. We may even return an

expression like this to the user via the REPL in some cases.

However, our goal is to use expressions like example 5.8 to perform computation.

This means that we need some way to manipulate expressions like example 5.8, and

our manipulations should correspond with computation. The way we accomplish

this is to rewrite an expression into a “simpler”, semantically equivalent expression. I

69

will formally define our rewrites in chapter §6, and what simpler means in chapter

§15.

In the case of eq. (5.8), it can be rewri�en as a bag which enumerates the possible

values of X:











⟅⟨X⟩@c : c =

{
1 if X ∈ Z

0 otherwise
⟆

×∩⟅⟨X⟩@c : c =

{
1 if X ≥ 0

0 otherwise
⟆

×∩⟅⟨X⟩@c : c =

{
1 if X < 5

0 otherwise
⟆











→⟅
⟨X = 0⟩@1,
⟨X = 1⟩@1,
⟨X = 2⟩@1,
⟨X = 3⟩@1,
⟨X = 4⟩@1

⟆ (5.9)

Here, we have rewri�en from example 5.8 into example 5.9. In this example,

and throughout this dissertation, rewrites are denoted using the right arrow→.

I claim that the rewri�en bag in example 5.9 is simpler than example 5.8, as we

can directly read the values 0,1,2,3,4 (the integers between [0,5)) from the bag.70

For now, an intuitive definition of simpler is that a simpler R-expr requires less

computation to get the “final” answer. For example, the value −1 is simpler than

eiπ , which requires evaluating the exponential to determine the value of eiπ . I will

give a formal definition of simpler in section §15.3.

5.1.4 A More Convenient Notation

The notation that I have used so far is admi�edly very verbose and tedious to write.

As such, we have designed a much more concise notation for R-exprs.

First, observe that all bag expressions are over all variables. Hence, naming

variables in the ⟨· · · ⟩ tuple is redundant. Second, we will say that all R-exprs

“return” a multiplicity. Hence, it is unnecessary to write the if-case expression as

in examples 5.7 and 5.8. Third, we are going to represent operations using term

names instead of mathematical symbols. This means that an expression like X ∈ Z

is instead wri�en as int(X). Additionally, we will write X ≥ 0 as lessthaneq(0,X)

and X < 5 as lessthan(X,5). Variables, such as X, follow the same convention as

70Even if represented the set of integers between [0,10100) as a bag of 10100 integers, we still con-
sider the bag of 10100 integers as simpler despite its enormous size, as it requires less “computation”.
This is explained in detail in section §15.3.

70

Dyna code, they start with a capital le�er and are colored Green in this dissertation.

Finally, for intersection and union, we will write * and + in monospaced typewriter

font instead of ×∩ and +∪.

All together, this will allow us to write example 5.8 as the R-expr:

int(X)*lessthaneq(0,X)*lessthan(X,5)

5.2 Semantics of R-exprs

As noted in section §5.1.3, when rewriting an R-expr to perform “computation”,

we are rewriting the R-expr into another simpler R-expr which is semantically

equivalent. As such, we need to define semantic equivalence for R-exprs.

5.2.1 Ground Values

Let us first start by defining the set of ground terms G built from a ranked set of

functors F and primitive values such as integers, floats, and strings. For example,

G includes 123, 3.14, "hello world" and structured terms like foo[123, "hello",

bar[4,5,6]] (as introduced in section §2.1.1).

We further defineM = N∪{∞} as the set of multiplicities. Therefore, a bag

containing an n-arity tuple of ground terms (Gn), can be represented as a function

that map from Gn to the multiplicity M ∈M of that tuple contained in the bag:

Gn ↦→M.

That said, we do not use the integer position in an n-arity tuple as it is inconve-

nient. Instead, we use a map from variable names to ground terms. Let Ṽ be an

infinite set of unique variable names. A environment E(·) is, a function that

maps from a finite set of variables to ground terms. More specifically, for any

U ⊂ Ṽ , the U-tuples are maps E(·) : U ↦→ G. Using this representation, a bag over

U-tuples can be represented by a function F(·) where F(·) : (U ↦→ G) ↦→M.71

71For this chapter, E(·) will only be used when it contains the necessary variables. Hence, we do
not define what happens if a variable is not contained in E(·). In chapter §8, when discussing the
implementation of R-exprs and the rewrite rules, I will discuss what happens when a variable is not
contained in E(·).

71

For convenience, we define the set of value types as V = Ṽ ∪G. We extend the

E(·) function to V by mapping any ground value g ∈ G to itself. With this, we can

think of the E(·) function as a kind of “get value” function.72

1. JU=VKE = if E(U) = E(V) then 1 else 0, where U,V ∈ V

2. JT=f(X1, · · ·,Xn)KE = if E(T) = f [E(X1), · · · ,E(Xn)] then 1 else 0,

where T,X1, · · ·,Xn ∈ V and f ∈ F

3. Jplus(I,J,K)KE = if E(I)+E(J) = E(K) then 1 else 0, where I,J,K ∈ V

4. JR+SKE = JRKE + JSKE , where R,S ∈R

5. JR*SKE = JRKE · JSKE , where R,S ∈R

6. JMKE = M, where M ∈M

7. Jif(Q,R,S)KE = if JQKE > 0 then JRKE else JSKE , where Q,R,S ∈R

8. Jproj(X,R)KE = ∑x∈G JRKE[X=x], where X ∈ V,R ∈R

9. JA=sum(X,R)KE = if E(A) = ∑x∈G(x∗ JRKE[X=x]) then 1 else 0,
where A,X ∈ V,R ∈R.

10. Jf(T1, . . . ,Tn)KE = JRf{X1 ↦→ T1, . . . ,Xn ↦→ Tn}KE , where T1, . . . ,Tn ∈ V

Figure 5-1. Semantic definitions of all R-expr kinds. The semantics JRKE of an
R-expr R is defined as the multiplicity (M= N∪{∞}) of E in the bag defined by
R. E is a tuple of named variables and their ground assignments (section §5.1.1).
Additional details about the R-exprs’ definitions are provided in section §5.2.2.

5.2.2 Inductive Definition of R-exprs Semantics

In the remainder of this section, I will give the definitions of R-exprs and their

semantics. R-exprs are terms that are defined recursively in terms of sub-R-exprs

72Note that the variables and ground terms are disjoint (G∩ Ṽ = /0).

72

and value types V . As we will see shortly, the semantics of R-exprs is defined as a

system of equations where the semantic interpretation each individual R-expr is

defined as a multiplicity given environment E(·).

To make this more formal, let R denote the set of all R-exprs.

Each R-expr R ∈R has a finite set of free variables denoted by vars(R). A free

variable is a variable in an R-expr that is not bound by another R-expr. Note,

vars(R)⊆ Ṽ as vars(R) returns a set of named variables, not value types.

Next, for each environmentE , the denotation function J·KE : R ↦→M interprets

an R-expr in the environment given by the named tuple E . It defines a multiplicity

JRKE for any R-expr R whose vars(R)⊆ domain(E).73

Wewill now define and explain JRKE and vars(R) for the di�erent kinds of R-exprs

in our system, which are also shown in figure 5-1.

5.2.2.1 Equality Constraints

First, we define equality constraints between two value types U,V∈ V . An equality

constraint is true in an environment when the ground value assigned to U and V

is equal. This is represented using multiplicity 1, which indicates that the current

environment is consistent with this R-expr and is therefore contained in the bag

represented by this R-expr. False is represented with multiplicity 0.74

1. JU=VKE = if E(U) = E(V) then 1 else 0, where U,V ∈ V

Notice that we did not write JUKE = JVKE but E(U) = E(V)—our denotation function

J·KE maps R-exprs to multiplicities, and E(·) maps variables and ground terms in V

to ground terms in G.

5.2.2.2 Structured Term Equality Constraints

Next, we have equality constraints with a structured termwith T,X1, · · ·,Xn ∈ V

and f ∈ F being the name of the structured term (previously introduced in section

§2.1.1).

73J·KE is undefined in the case that vars(R) ̸⊆ domain(E).
74Recall that a multiplicity is defined asM = N∪{∞}. Hence, 0 and 1 are the identity and

annihilator elements of the multiplicities.

73

2. JT=f[X1, · · ·,Xn]KE = if E(T) = f[E(X1), · · · ,E(Xn)] then 1 else 0,

where T,X1, · · ·,Xn ∈ V and f ∈ F

5.2.2.3 Builtin R-exprs Constraints

We also have a number of built-in R-expr kinds. These R-exprs correspond to “low-

level” operations on primitive ground terms, such as addition between numbers

or concatenating strings. Built-ins are defined as 1 when the assignment to their

arguments is consistent with their definition. For example, the built-in addition,

which henceforth will be referred to as plus for clarity, is defined as follows:

3. Jplus(I,J,K)KE = if E(I)+E(J) = E(K) then 1 else 0, where I,J,K ∈ V

Note, in this definition, the+ sign corresponds with addition between the values

of E(I) and E(J), which are both in the G that is the Herbrand universe of values

of the Dyna language.

5.2.2.4 Constraints

The R-exprs we have so far are constraints. A constraint is any R-expr that has a

multiplicity of 0 or 1 in any environment. It is useful to track constraints as they

can be duplicated as needed or removed when they are redundant.75

5.2.2.5 Disjunctions

Disjunctions are the union of two or more R-exprs, and are denoted using + .

4. JR+SKE = JRKE + JSKE , where R,S ∈R

Disjuncts correspond with the +∪ as we saw before in section §5.1.1. Disjuncts are

usually not constraints as their multiplicity is o�en greater than 1.76 This time,

the + sign on the right-hand side of this definition is the addition between the

75This is allowed as this does not change the multiplicity of the R-expr. e.g. 1 ∗ 1 ∗ 1 = 1 or
0∗0∗0 = 0

76If R and S are both constraints and non-overlapping, then the disjunction R+S is also a constraint.

74

multiplicities returned by JRKE and JSKE . The typewriter font plus sign ‘+ ’ in the

semantic brackets is only used to represent disjunctions, as done here.

The free variables in a disjunction are the union of the free variables in disjunctive

sub-R-exprs: vars(R+S) = vars(R)∪vars(S). This is in contrast to the earlier R-expr

kinds where the free variables are simply all of the variables that appeared in the

R-expr.

5.2.2.6 Conjunctions

Conjunctions are the intersection of two or more R-exprs, and are denoted using* .

5. JR*SKE = JRKE× JSKE , where R,S ∈R

Conjuncts correspond with ×∩ from before. Conjunctions are o�en constraints

themselves as if both conjuncts R and S are a constraint, then a conjunction is

also a constraint. The typewriter font multiplication symbol ‘* ’ is only used to

represent conjunctions. In the wri�en presentation in this dissertation, I will follow

the standard order-of-operations with ‘+ ’ and ‘* ’, with ‘* ’ binding more tightly than

‘+ ’. Further note that we define all conjunctions with a 0 as 0, even in the case of

an ∞ multiplicity. Hence 0×∞ = 0.

Just like with disjunctions, the free variables are the union of the free variables

in the conjunctive sub-R-exprs: vars(R*S) = vars(R)∪vars(S).

5.2.2.7 Multiplicities

Multiplicities R-expr kinds are defined as the multiplicity they represent.

6. JMKE = M, where M ∈M

Multiplicities always return the same value M, and are not influenced by the en-

vironment E . For example, the multiplicity 1 represents the bag that contains all

environments exactly once, and 0 represents an empty bag. E.g. J1KE = 1 and

J0KE = 0.

5.2.2.8 Conditionals

We allow conditional or if-expressions in our relational algebra as follows:

75

7. Jif(Q,R,S)KE = if JQKE > 0 then JRKE else JSKE , where Q,R,S ∈R

Notice that this construction can be used to implement anti-joins, set di�erences,

and priority unions on sets. It does not support bag di�erences, which would involve

subtracting multiplicities, but instead uses Q to choose between two multiplicities

(which can be 0). Furthermore, an if-expression is a constraint if R and S are both

constraints.77

As with disjunctions and conjunctions, the free variables are the union of the

free variables from the sub-R-exprs: vars(if(Q,R,S)) = vars(Q)∪vars(R)∪vars(S).

5.2.2.9 Projection

Next, we define projection, which removes a named column (variable) from a

bag relation, summing the multiplicities of tuples that have become equal. When

translating a Dyna program into an R-expr (chapter §7), projections will be used to

eliminate a rule’s local variables.

8. Jproj(X,R)KE = ∑x∈G JRKE[X=x], where X ∈ V,R ∈R, and where E[X = x]

means a version of E that has been modified such that E(X) = x,78 79 and ∑x∈G

is a summation of the multiplicities over all possible values in G.80

In the case that the variable X is not contained in vars(R), and the multiplicity of

R is non-zero (JRKE > 0), then the multiplicity of projection is defined as infinity

(∞).81 The reason is that this is equivalent to summing a non-zero value an infinite

number of times because G is an infinite set.

The free variables of projection are again based on the sub-R-expr’s free vari-

ables, but this time, we are removing the variable X from the set of free variables:

77This fact will be used for some advanced rewrite rules discussed in chapter §9.
78 If X is already contained in E(·), then it will be overridden, otherwise it is added as a new

variable.
79 Recall that V = Ṽ ∪G, hence it is possible that X ∈ G and a ground value. This case is “allowed”

though not particularly interesting. We have Jproj(g,R)KE = JRKE as there is only one value g ∈ G
that is equal to g.

80Usually JRKE[X=x] will have a non-zero multiplicity for a finite number of values of x ∈ G. Hence,

this sum over G (which is infinite) can be computed by identifying the relevant subset of G. This
will be discussed extensively in the following chapters.

81For example, Jproj(X,1)KE = ∞, as this is equivalent to ∑x∈G 1, where |G|= ∞.

76

vars(proj(X,R)) = vars(R)−{X}.

5.2.2.10 Aggregation

Aggregation does the same as projection, but instead of adding multiplicities, it

aggregates the X value and computes a new value Y as the result of aggregation.

Thus, it removes column X from the bag but introduces a new column Y.

Throughout this dissertation, I will use the ‘sum’ aggregator as a prototypical

aggregator. However, there are other aggregators which have similar semantic

denotations and rewrite rules.

9. JA=sum(X,R)KE = if E(A) = ∑x∈G(x∗ JRKE[X=x]) then 1 else 0,

where A,X ∈ V,R ∈ R. The ∗ in the summand means that the summation

includes JRKE[X=x] copies of the value x (possibly ∞ copies82). If there are no

summands (meaning JRKE = 0 for all E), then the result of ∑ · · · is defined

as null, which is a value outside of G. Hence, it has the multiplicity of 0. In

other words, when R is 0, we have JA=sum(X,0)KE = 0. If there are non-numeric

summands, or the sum is not well defined,83 then the result of the sum is

defined to be an error value in G, such as NaN.

Notice that the aggregator R-expr is a constraint as its multiplicity is either 1 or

0. Additionally, observe we do not define Jsum(X,R)KE , whose value would not be a

multiplicity. Rather, the aggregator is wri�en as A=sum(X,R), which denotes where

the result of aggregation will be saved (variable A in this case) and is considered a

more readable notation for what could have been wri�en as sum(A,X,R).

The free variables of aggregation project out the input variable X and add the

variable A to the free variables: vars(A=sum(X,R)) = (vars(R)−{X})∪{A}

5.2.2.11 User-defined R-exprs

Finally, it is convenient to augment the built-in relations with user-defined relation

kinds. Choose an identifier f ∈ F and choose some R-expr Rf with vars(Rf) ⊆

82Some aggregators such as min and max do not care about the number of copies, as long as it is
more than one. Aggregators such as sum can sum an infinite number of zeros and still have the
value zero, e.g. 0 = ∑

∞
i=0 0.

83For example, the sum ∑
∞
i=0(−1)i does not converge and therefore not well defined.

77

{X1, . . . ,Xn} (which are n distinctly named variables) to serve as the definition or

R-expr expansion of f. Now define

10. Jf(T1, . . . ,Tn)KE = JRf{X1 ↦→ T1, . . . ,Xn ↦→ Tn}KE , where T1, . . . ,Tn ∈ V

The {↦→} notation denotes substitution for variables, where free variables of

Rf are renamed, and variables captured by other R-exprs, such as projection

or aggregation, are first renamed to avoid accidental capture.84

User-defined R-exprs make it possible to define R-exprs which are circularly defined

in terms of themselves.85 In fact, a Dyna program will normally do this. In this

case, the definition of J·KE is not an inductive function. Rather, J·KE is interpreted

as a variable in a system of equations, where we solve for values of the J·KE that

satisfies these constraints. This is allowed by Dyna, as in section §2.5, I stated that

the semantics of Dyna allow us to find any consistent assignment. In practice,

there can be multiple possible assignments, and there is no guarantee that the

system will find a particular assignment.86

5.3 Example R-exprs

Given that we have now defined the basic R-expr kinds, let us look at some simple

R-exprs to see how they can represent bags and simple Dyna programs. This is not

intended as a complete introduction to how R-exprs can represent Dyna programs

or bag relations, as we will see more in chapter §7.

5.3.1 Finite Materialized Relation

As a first example, we can express a finite bag relation shown in figure 5-2a as an

R-expr using conjunctions, disjunctions, and equality assignments as in figure 5-2b.

84This is equivalent to α-renaming in λ -calculus.
85This is similar to a let rec construction in a functional programming language.
86Dyna does not guarantee which assignment will be found. This is in contrast to other logic

programming languages, such as Datalog (section §3.1.2), that guarantee a minimal assignment is
found.

78

⟅
⟨X = 1,Y = 1⟩@1

⟨X = 2,Y = 6⟩@1

⟨X = 2,Y = 7⟩@2

⟨X = 5,Y = 7⟩@1

⟆
(a) Bag

(X=1)*(Y=2)+

(X=2)*(Y=6)+

(X=2)*(Y=7)*2+

(X=5)*(Y=7)

(b) R-expr

Figure 5-2. Bag of ground assignments to the variables X and Y. The (X=1) R-exprs
are each individual R-expr equality constraints (as previously defined, section
§5.2.2.1). The equality constraints are combined into conjunctions using ‘* ’ (section
§5.2.2.6). Finally, the conjunctions are combined into a big disjunction using ‘+ ’
(section §5.2.2.5).

Each individual tuple of the bag translates into a product (*) of several (Variable=

value) expressions. Encoding the multiple tuples contained in the bag is done by

simply adding (+) the R-exprs for di�erent tuples together using a disjunction.

R-exprs of this form can be used as the basis for user-defined R-exprs when

representing external data as an R-expr (section §5.2.2.11). Finite materialized

R-exprs are also desirable representations to return to the user when making a

query, as they can be easily understood by reading the relevant values out of the

R-expr (section §2.3).

5.3.2 Bag with Constraints

⟅⟨X⟩@c : c =

{
1 if ∃y ∈ Z s.t. 2∗ y = X

0 otherwise
⟆

(a) Bag

if(proj(Y,int(Y)*times(2,Y,X)),1,0)

(b) R-expr

Figure 5-3. Bag of even integers.

79

The bag expression in figure 5-3a checks whether there exists an integer y such

that 2 ∗ y = X. In figure 5-3b we introduce a new variable Y using proj(Y,·). We

ensure that the multiplicity of the R-expr is either 0 or 1 by using the if-expression

to match the ∃ in the bag definition. Otherwise, the projection could have a

multiplicity greater than 1, though this does not actually happen in this case.

5.3.3 Simple Dyna Rule

As a preview for chapters 6 and 7, figure 5-4 shows a single-rule Dyna program and

the equivalent R-expr representation.

358 a(X) += (X+7)*X.

(a) Dyna

a(X,Result)
1
−→ (Result=sum(Inp,

proj(Tmp,plus(X,7,Tmp)*times(Tmp,X,Inp))))

(b) R-expr

Figure 5-4. Simple Dyna program wri�en as an R-expr.

Dyna user-defined terms, which are comprised of rules such as line 358, define

their own user-defined R-expr kind (section §5.2.2.11) and rewrite rule (shown in

figure 5-4b).

The user-defined R-expr has the variable X for the arguments to the expression,

as well as a Result variable for the returned value of the expression. A rewrite

rule is defined to rewrite the user-defined R-expr to its corresponding definition.

Rewrite rules are represented as an arrow (→), with important rewrite rules having

a reference number over the arrow that will appear in the text and are clickable

(e.g. rewrite rule 1).87

Calls to built-ins, wri�en as ‘+ ’ and ‘* ’ in the Dyna source on line 358 are

converted into the R-exprs plus(·,·,·) and times(·,·,·). We reserve the ‘* ’ and ‘+ ’

symbols in the R-expr representation for conjunction and disjunction, which are

used much more frequently.

All local variables and intermediate variables are projected out in user-defined

R-exprs. All free variables must appear in the user-defined R-exprs. Intermediate

87Some PDF viewers have a link preview feature when hovering over links. I strongly suggest that
you turn that feature on.

80

variables are introduced as needed when translating from Dyna into R-exprs, as

exemplified by the variable Tmp in this example.

5.4 Conclusion of R-expr Semantics

The R-expr kinds defined in this chapter form the basis for our internal representa-

tion. In the next three chapters, I will define semantic preserving rewrite rules for

R-exprs (chapter §6), as well as show in further detail how Dyna is translated into

R-exprs (chapter §7) and how we can implement a simple term rewriting system

using R-exprs (chapter §8).

81

Chapter 6

Rewrites Rules for R-exprs

The previous chapter gave the denotational semantics for R-exprs. I will now

provide the operational semantics. The basic idea is that we can use rewrite rules to

simplify, an R-expr until it is either a finite materialized relation—a list of tuples—or

has some other convenient form. All of our rewrite rules are semantics-preserving

by construction, so our rewrite system is sound, although it is not and cannot be

complete, as chapter §15 will discuss. Our rewrites can be applied to any sub-R-expr

contained within a larger R-expr. Chapter §8 will discuss the procedure we use to

apply rewrites. Our rewrite system is not confluence, meaning that the order in

which rewrites are applied can result in di�erent semantically equivalent R-exprs.

However, our rewrite system is normalizing, in that it eventually reach a state where

no more directional rewrites that can be applied.

6.1 Equality Constraints and Multiplicity

We start with rewrites for basic equality constraints.

(X=X)
2
−→ 1 ▷trivially true when the variables/values are the same

(X=Y)
3
−→ 0 if X,Y∈ G and X̸=Y ▷values not equal

(G=X)
4
−→ (X=G) if (G∈ G and X∈ Ṽ) or (G≺X) ▷canonical order

(X=Y)*R
5
−→ (X=Y)*R{X ↦→ Y} if X∈ Ṽ ▷equality propagation

where R{X ↦→ Y} denotes replacing the variable X with the value type Y in the R-expr R

First, rewrite rule 2 checks for equivalence between its two arguments. When a

82

R-expr constraint has been successfully and completely “checked”, it is rewri�en

as a 1, as in this case. Conversely, rewrite rule 3 handles the case where X and Y are

not equal. It requires that both X and Y be known ground values. When both values

are known, we can use the equality operator defined on ground values G to check if

X and Y are equal. Constraints whose check fails are rewri�en as 0, which indicates

that the current assignment of variables in the environment E(·) is inconsistent

and, therefore, not contained in the bag represented by the R-expr.

For equality, we prefer to have a canonical ordering where we place any ground

value as the second argument. If we have two variables, rewrite rule 4 reorders the

equality constraint according to an arbitrarily chosen ≺ ordering on variables.88

The most common operation with equality constraints is performed by rewrite

rule 5, which propagates a variable binding to other conjoined R-exprs. The Y is

likely a ground value, in which case propagating the value of Y in place of X enables

other rewrites, as we shall see.

6.1.1 Structured Term Equality Rewrites

Structured terms are similar to equality constraints; however, they involve multiple

variables and a named term f,g ∈ F .

(X=f[Y1,. . .,X,. . .,Yn])
6
−→ 0 ▷occurs check, not true for any ground value of X

(X=f[Y1,. . .,Yn])*(X=f[Z1,. . .,Zn])
7
−→ (X=f[Y1,. . .,Yn])*(Y1=Z1)*· · ·*(Yn=Zn)

(X=f[Y1,. . .,Yn])*(X=g[Z1,. . .,Zm])
8
−→ 0 if (f ̸= g or n ̸= m)

(G=f[Y1,. . .,Yn])
9
−→ (Y1=Z1)*· · ·*(Yn=Zn) if G∈ G and G=f[Z1,. . .,Zn]

(G=f[Y1,. . .,Yn])
10
−→ 0 if G∈ G and G ̸=f[Z1,. . .,Zn]

Rewrite rule 6 implements the occurs check, looking for expressions of the form

X=f[Y,Z,X]. In Dyna, we do not allow for cyclic data structures (which is allowed in

some Prolog implementations). Hence, there is no value X ∈ G, so this expression is

unsatisfiable, thus can be rewri�en as 0, without having to identify the value of X.

Rewrite rules 7 and 8 perform unification between di�erent structured term

rewrites. If two incompatible structured terms are unified together (in this case,

88We do not care which ≺ function is used, as long as it is consistent. An example would be
variable string name comparisons.

83

f,g ∈ F and f ̸= g), then this can be rewri�en as 0 as seen in rewrite rule 8.89

Similarly, when the functor names on two structured term R-exprs are equivalent

to each other, all of the arguments of the terms are unified together, as in rewrite

rule 7. Observe that the result of rewrite rule 7 still includes at least one structured

unification R-expr. The reason is that we still need the constraint on the variable X.

Without this constraint, the bag semantics of the R-expr would change, and there

are likely other conjunctive sub-R-exprs in the containing R-expr that depend on

the value of X.

Rewrite rules 9 and 10 replicate rewrite rules 7 and 8 but are for when the

structured term is a ground, fully known value. For example, f[1,2,3] is ground

and can be entirely represented by the value variable G, and can be handled by

rewrite rule 9 or 10. Whereas, f[1,2,X] is not ground, as it contains the variable X,

and must be handled with rewrite rule 7 or 8.

It can be seen that rewrite rules 2–10 is equivalent to the well-known unification

algorithm commonly seen in logic programming [102].

6.1.2 Multiplicity Rewrites

Given the rewrite rules that we have so far, we may end up creating an arithmetic

expression like 0*0+1*0+1*1+1*1+0*1, which can be reduced to the multiplicity 2.

This is done using rewrites that implement basic arithmetic on multiplicitiesM:

M + N
11
−→ L if M,N ∈M and M+N=L

M * N
12
−→ L if M,N ∈M and M∗N=L

6.2 Joining Relations

So far, we have the rewrites on the equality R-expr kinds. To represent a bag with

multiple variables, we need to combine multiple equality constraints together, as

in section §5.3.1. Furthermore, we need to be able to rearrange the R-expr to bring

relevant sub-R-exprs together so that we can carry out the aforementioned rewrites.

89This would have been equivalent to writing f[X,Y,Z]=g[Q,H], and there is no assignment to
X,Y,Z,Q,H that makes this expression true.

84

To carry out such rewrites, we use the fact that multiplicities form a commutative

semiring under + and * . Since any R-expr evaluates to a multiplicity, these rewrites

can be used to rearrange unions and joins of R-exprs Q,R,S ∈R:

1 * R
13
−→ R ▷multiplicative identity

0 * R
14
−→ 0 ▷multiplicative annihilation

0 + R
15
−→ R ▷additive identity

∞ * R
16
−→ ∞ if R ∈M and R > 0 ▷absorbing element

∞ + R
17
−→ ∞ ▷absorbing element

R + S
18
←→ S + R; R * S

19
←→ S * R ▷commutativity

Q + (R + S)
20
←→ (Q + R) + S; Q * (R * S)

21
←→ (Q * R) * S ▷associativity

Q * (R + S)
22
←→ Q * R + Q * S ▷distributivity

R * M
23
←→ R + (R * N) if M,N ∈M and (1+N=M) ▷implicitly does M = 1+N

R
24
←→ R * R if R is a constraint ▷as de�ned in section §5.2.2.4

R
25
←→ R * S if S is a constraint and ∀EJRKE = JR*SKE ▷S is redundant with R

Note, rewrite rules 18 to 25 are bidirectional rewrites, which may appear con-

tradictory to statement at the start of this chapter that our rewrite system will be

normalizing. As will be discussed in chapter §8, our rewrite system is normalizing

with respect to the directional rewrite rules, and bidirectional rewrites, such as

rewrite rules 18 to 25, will be handled specially and will only be used to rearrange

the R-expr to enable directional rewrites.

6.2.1 Simple Example

Let us try applying the rewrites we have to the finite materialized bag R-expr, like

the R-expr from section §5.3.1. Let us compute the intersection between two finite

relations R-exprs.

(

(X=2)*(Y=6)*3+

(Y=7)

)

*







(X=1)*(Y=2)+

(X=2)*(Y=6)+

(X=2)*(Y=7)*2+

(X=5)*(Y=7)







(6.1)

85

We first expand out the first disjunct using the distributive rewrite (rewrite rule 22):

→ (X=2)*(Y=6)*3 *







(X=1)*(Y=2)+

(X=2)*(Y=6)+

(X=2)*(Y=7)*2+

(X=5)*(Y=7)







+ (Y=7) *







(X=1)*(Y=2)+

(X=2)*(Y=6)+

(X=2)*(Y=7)*2+

(X=5)*(Y=7)







(6.2)

The assignments to X and Y can be propagated through the conjunctive R-expr

using rewrite rule 5:

→ (X=2)*(Y=6)*3 *







(2=1)*(6=2)+

(2=2)*(6=6)+

(2=2)*(6=7)*2+

(2=5)*(6=7)







+ (Y=7) *







(X=1)*(7=2)+

(X=2)*(7=6)+

(X=2)*(7=7)*2+

(X=5)*(7=7)







(6.3)

Using rewrite rules 2 and 3 equality constraints which have the same value can be

rewri�en as 1 and di�erent values are rewri�en as 0:

→ (X=2)*(Y=6)*3 *







0*0+

1*1+

1*0*2+

0*0







+ (Y=7) *







(X=1)*0+

(X=2)*0+

(X=2)*1*2+

(X=5)*1







(6.4)

The zeros in the R-expr cause branches of the disjunction to be eliminated (rewrite

rule 14), and multiplicities can be combined together using multiplication (rewrite

rule 12):

→ (X=2)*(Y=6)*3 *

(

1

)

+ (Y=7) *

(

(X=2)*2+

(X=5)*1

)

(6.5)

6.2.2 Structuring Disjuncts and Conjuncts as Tries

Notice that the factored form (Y=7)*((X=2)*2 + (X=5)*1) + (Y=6)*((X=2)*3)

in example (6.5) is a more compact R-expr than the sum-of-products form from

example (6.1) that we started with, and it is preferable in some se�ings. In fact, it

is an example of a trie representation of a bag relation.90 Like the root node of a

90We will see R-exprs represented as tries again in section §11.6.1.

86

trie, the expression partitions the bag of ⟨X, Y⟩ tuples into disjuncts according to

the value of Y, and then partitions further by the value of X.

A trie-shaped R-expr generally has a smaller branching factor than a sum-of-

products R-expr. As a result, it is comparatively fast to query it for all tuples that

match on a given value of Y, or on a (Y, X) pair, by narrowing down to the matching

sub-R-exprs at each level of the trie. For example, suppose that we query the R-expr

from example (6.5) by conjoining it with the query (Y=5) , which is represented as

an R-expr. In this case, we can rewrite (Y=5)*(Y=7)→0 and (Y=5)*(Y=2)→0 without

having to check the part of the trie for the variable X.

The example query (Y=5) provides an opportunity for a larger point. The trie has

the form (Y=7)*(X=2)*R , where this R-expr can be rewri�en to 0 based on the first

sub-R-expr (Y=7) , without spending any e�ort to rewrite R, which may represent a

large R-expr. This is an example of short-circuiting evaluation and is the same

logic that allows a SAT solver or Prolog solver to backtrack immediately upon

detecting a contradiction.

6.3 Built-in R-expr Rewrites

Built-in constraints are an important ingredient in representing bag relations. While

they are not the only ingredient,91 they have the advantage that libraries of built-in

constraints, such as plus(I,J,K) (section §5.2.2.3), usually come with rewrite rules

for reasoning about these constraints [72]. Some of the rewrite rules invoke opaque

procedural code.

Recall that the arguments to a plus constraint are either variables or ground

constants. Not all plus constraints can be rewri�en, but a library should provide at

least the cases:

91Other non-recursive base-case ingredients of R-exprs are structural equality constraints and
user-defined R-exprs for user-defined terms.

87

plus(I,J,K)
26
−→ 0 if (I,J,K ∈ R and I+J ̸= K) or I ̸∈ R or J ̸∈ R or K ̸∈ R

plus(I,J,K)
27
−→ 1 if I,J,K ∈ R and I+J = K ▷Note that R⊂ G

plus(I,J,X)
28
−→ (X=I+J) if I,J ∈ R and X ∈ V

plus(I,X,K)
29
−→ (X=K−I) if I,K ∈ R and X ∈ V

plus(X,J,K)
30
−→ (X=K−J

︸ ︷︷ ︸

∈R

) if J,K ∈ R and X ∈ V

As an example, the R-expr R= proj(J,plus(I,3,J)*plus(J,4,K)) represents the

infinite set of (I,K) pairs such that K= (I+3)+4 arithmetically. (The intermediate

temporary variable J is projected out.) The rewrite rules already presented (plus a

rewrite rule from section §6.4 below to eliminate proj) su�ice to obtain a satisfac-

tory answer to the query (I=2) or (K=9) , by rewriting either (I=2)*R or R*(K=9) to

(I=2)*(K=9) .92

On the other hand, if we wish to reduce the R-expr R on its own, the above rules

do not apply. In the jargon, the two plus constraints within R remain as delayed

constraints, which cannot do any work until more of their variable arguments are

replaced by constants (e.g., due to equality propagation from a query, as above).

We can do be�er in this case with a library of additional rewrite rules that

implement standard theorems of arithmetic [72]. With these, the R from the

same example reduces to plus(I,7,K), which is a simpler description of this infi-

nite relation. Such rewrite rules are known as idempotent constraint handling

rules. Other useful examples concerning plus include plus(0,J,K)
31
−→(K=J) and

plus(I,J,J)
32
−→(I=0) , since, unlike the rules at the beginning of this section, they

can make progress even on a single plus constraint whose arguments include more

than one variable.

Similarly, some useful constraint propagators for the lessthan relation include

lessthan(J,J)
33
−→ 0; the transitivity rule lessthan(I,J)*lessthan(J,K)

34
−→

92For example, with(I=2)*R the rewrite sequence is as follows:

(I=2)*proj(J,plus(I,3,J)*plus(J,4,K))
5
−→(I=2)*proj(J,plus(2,3,J)*plus(J,4,K))

..(Rewrite rule 5, equality propagation)
28
−→(I=2)*proj(J,(J=5)*plus(J,4,K)) (Rewrite rule 28 applied to plus(2,3,J))
5
−→(I=2)*proj(J,(J=5)*plus(5,4,K)) (Rewrite rule 5, equality propagation)
28
−→(I=2)*proj(J,(J=5)*(K=9)) (Rewrite rule 28 applied to plus(5,4,K))
39,41,13
−−−−→(I=2)*(K=9) (Rewrite rules 13, 39 and 41 used to eliminate projection)

88

lessthan(I,J)*lessthan(J,K)*lessthan(I,K); and lessthan(0,I)*plus(I,J,K)
35
−→

lessthan(0,I)*plus(I,J,K)*lessthan(J,K). The integer domain can be split by

rules such as int(I)
36
−→int(I)*(lessthan(I,1)+lessthan(0,I)) in order to allow

case analysis of, for example, int(I)*myconstraint(I). Rewrite rules can also be

used to propagate the domain information about variable:

lessthan(I,A)*lessthan(I,B)*plus(A,B,C)
37
−→

proj(K,lessthan(I,A)*lessthan(J,B)*plus(A,B,C)*plus(I,J,K)*lessthan(K,C)). All

of these rules apply even if their arguments are variables, so they can apply early

in a reduction before other rewrites have determined the values of those variables.

Indeed, they can sometimes short-circuit the work of determining those values.

Like all rewrites, built-in rewrites R→S must not change the denotation of R:

they ensure JRKE=JSKE for all E . For example, lessthan(X,Y)*lessthan(Y,X)→∗ 0

is semantics-preserving because both forms denote the empty bag relation.

6.4 Projection

Projection is implemented using the following rewrite rules. The first two rewrites

make it possible to push the proj(X,· · ·) R-expr down through the sums and prod-

ucts of R, so that it applies to smaller subexpressions that mention X. The third

rewrite allows for projections of di�erent variables to commute with each other:

proj(X,R+S)
38
←→ proj(X,R) + proj(X,S) ▷distributivity over +

proj(X,R*S)
39
←→ R*proj(X,S) if X /∈ vars(R) ▷see also rewrite rule 45 below

proj(X, proj(Y, R))
40
←→ proj(Y, proj(X, R)) ▷projections commute with each other

We can then use the following rewrite rules to eliminate the projection operator

from R-exprs whose projection is easy to compute. (In other cases, it must remain

delayed.)

proj(X,(X=Y))
41
−→ 1 if X̸=Y

proj(X,(X=f[Y1,. . .,Yn]))
42
−→ 1 if X/∈ {Y1, . . . ,Yn}

proj(X,bool(X))
43
−→ 2 ▷cardinality of a variable given bool constraint

proj(X,int(X))
44
−→ ∞ ▷cardinality of a variable given int constraint

proj(X,R)
45
−→ R*∞ if X /∈ vars(R) ▷cardinality of an unconstrained variable

89

proj(X,proj(Y,boolean_or(X,Y,true)))
46
−→ 3 ▷cardinality of a variable pair given a

certain constraint (boolean_or has 3 satisfying assignments that result in true)

int(X)*int(Y)*proj(Z,plus(X,Y,Z))
47
−→ int(X)*int(Y) ▷cardinality of integer

addition (a unique answer always exists)

How are these rewrites justified? Observe that proj(X,R) in an environment E

denotes the number of X values that are consistent with E’s binding of R’s other

free variables. Thus, we may safely rewrite it as another expression that achieves

the same denotation for every E . For example, in the case that a variable is re-

stricted to be a boolean value (e.g. (X=true)+(X=false)), then there are two possible

assignments to the variable X (rewrite rule 43).

6.4.1 Example Projection

As a simple example, let us project the variable K out of simple R-expr comprised of

equality constraints.

proj(K,((J=1) * (K=1) +

(J=2) * (K=6) +

(J=2) * (K=7) +

(J=2) * (K=7) +

(J=5) * (K=7)))

→∗

((J=1) * proj(K, (K=1))

+ (J=2) * proj(K, (K=6))

+ (J=2) * proj(K, (K=7))

+ (J=2) * proj(K, (K=7))

+ (J=5) * proj(K, (K=7)))

→∗ (J=1) + (J=2)*3 + (J=5)

Figure 6-1. Example Rewrites with Projection

The second step uses rewrite rules 38 and 39, while the third step involves rewrite

rule 41.

6.5 Aggregation

We give the following rewrite rules only for the aggregator sum, as isomorphic

rewrites apply to the other aggregators. They rewrite A=sum(X,R) as a chain of plus

constraints that maintain a running total. The three rewrites handle cases where

90

R is expressed as a disjunction of 0, 1, or 2 bag relations, respectively. A larger

disjunction such as (Q+R)+S is handled recursively.

A=sum(X,0)
48
−→ 0

A=sum(X,(X=Y))
49
−→ (A=Y)

A=sum(X, R+S)
50
−→ proj(B,proj(C,(B=sum(X,(X=agg_null)+R)) *

(C=sum(X,(X=agg_null)+S)) *

plus(B,C,A) * not_equal(A,agg_null)))

if R ̸=(X=agg_null) and S ̸=(X=agg_null)

The first two rewrites, 48 and 49, handle the case where there are 0 or 1 assignments

to the variable X in the bag relation. If there is nothing contained in the bag being

aggregated, then the result of aggregation was defined “as a value not contained

in G”, which is equivalent to rewriting the expression as 0. In the case that there is

only one value to sum over, then the aggregation does not change the resulting

value, hence it can be eliminated.

6.5.1 Rewrite Rule 50 for Handling Disjunctions

The third rewrite rule requires some explanation. Here, we are handling the case

where there is a disjunction R+S that has been brought to the top of the aggregator.

In this case, we can aggregate over R and S independently of each other and then

combine the result using the aggregator’s associated operator. In this case, using the

built-in plus(B,C,A). To correctly handle the disjunction, there are a few scenarios

that we need to handle carefully, namely the cases where R→∗ 0 or S→∗ 0.

First, let us consider the easy case where both R and S are rewri�en to have

some contributed value. For demonstration purposes, suppose that we have rewrit-

ten R into R→(X=5) and rewri�en S into S→(X=7). In this case, the entire R-expr

would be A=sum(X, (X=5)+(X=7)). We need to rewrite this R-expr so that the val-

ues 5 and 7 are arguments to plus so we can compute their sum. Using rewrite

rule 50, the resulting R-expr includes the sub-R-exprs B=sum(X,(X=agg_null)+(X=5))

C=sum(X,(X=agg_null)+(X=7)).93 In which case we can then use rewrite rule 51 to

93The variable names are generated so to not conflict with vars(R) or vars(S). We are not literally
using the variable names B and C. Variables that appear on the right-hand side of a rewrite and
inside a projection, such as B and C, are only chosen for the visual presentation of the rewrite, such
as in the case of rewrite rule 50.

91

work around the (X=agg_null) disjunct that has been added to this expression.

A=sum(X, (X=agg_null)+(X=Y))
51
−→ (A=Y)

This will assign the value of (B=5) and (C=7) . Using equality propagation, we get

the R-expr plus(5,7,A), which can be rewri�en using rewrite rule 28 to get the final

result (A=12) .

Now, let us consider a harder case where one of R or S is rewri�en as 0. Without

loss of generality, we will assume that R can be rewri�en as 0. And for demonstra-

tion purposes, we will say that S can be rewri�en as S→(X=7). Hence, we could have

the rewrite sequence (A=sum(X,R+S))→(A=sum(X,0+S))→(A=sum(X,S))→(A=sum(X,

(X=7)))→(A=7) , where the aggregation is only performed only on S. However,

using this sequence of rewrite requires that we defer rewrite rule 50 until we

are sure that all remaining disjuncts cannot be rewri�en as 0. This is contra-

dictory to our design, where we allow rewrites to apply whenever they can be

matched. As such, rewrite rule 50 can be applied when we match a disjunction

inside of the aggregator. To continue with the scenario, for the sake of demon-

stration, let us consider what happens if we leave o� the (X=agg_null) disjunct

on rewrite rule 50. In which case we will have (B=sum(X,R))*(C=sum(X,S)) as a

sub-R-expr on the right-hand side of rewrite rule 50. As already stated, R can be

rewri�en as 0. Hence, the resulting rewrite sequence would therefore become

(B=sum(X,R))*(C=sum(X,S))→(B=sum(X,0))*(C=sum(X,S))
48
−→ 0*(C=sum(X,S))

14
−→ 0.

Clearly, this is incorrect. It does not match (A=7) , which we know is the correct

answer as S→(X=7). The issue here is that rewrite rule 48 takes (B=sum(X,0)) and

rewrites it as 0. As such, we need to suppress the behavior of rewrite rule 48 while

still allowing rewrite rule 49 to rewrite the aggregator so that we can get the

contributed value.94

94 The complexity here is fundamental and must be handled somehow. Essentially, we need to
disable rewrite rule 48 so that when one disjunctive branch is rewri�en as 0, it does not cause the
entire R-expr to be rewri�en as 0 (e.g. A=sum(X,0)→0). Some alternative approaches to solving this
problem could be to introduce a second aggregator R-expr kind, like A=sum_of_disjunct(X,R)
or we could introduce a boolean flag onto the aggregator R-expr kind to track if the(X=agg_null)
disjunct is present. In fact, in chapter §11, when discussing a realistic implementation of R-exprs, the
aggregation kind will use a boolean flag instead of the disjunction trick here. I have chosen to present
the disjunction issue using the(X=agg_null) approach because I believe this presentation most
clearly demonstrates the semantics of aggregation while still representing the issue of aggregating
over a disjunction.

92

To suppress rewrite rule 48 we are going to introduce the disjunct (X=agg_null) ,

so theR-expr now be(B=sum(X,(X=agg_null)+R))*(C=sum(X,(X=agg_null)+S)) . Now

when R is rewri�en as 0, this causes the first conjunct to become (B=sum(X,

(X=agg_null)+0))
15,49
−−−→(B=agg_null) . Here, the interpretation of the value agg_null

is that the aggregated R-expr R returned nothing. Given that this no longer rewrites

as 0, this means the R-expr conjunctive (B=agg_null)*(C=sum(X,(X=agg_null)+S))

is not rewri�en as 0 but instead rewri�en as (B=agg_null)*(C=7) . Now, we have to

work around the value agg_null again. This is done by extending the definition of

plus so that it ignores agg_null and treats it like a numerical 0. This is done using

rewrite rule 52.

plus(agg_null, A, B)
52
−→ (A=B)

plus(A, agg_null, B)
52
−→ (A=B)

This means that we will get plus(agg_null,7,A)→(A=7), which is the correct result

for this example.

Finally, there is one last case that we need to handle. This is the case where both

R and S are rewri�en as 0. In this case, we have that (A=sum(X,R+S))→(A=sum(X,0))
49
−→ 0. With R and S being rewri�en as 0 a�er rewrite rule 50 was applied, we will

get the R-expr (B=agg_null)*(C=agg_null)*plus(B,C,A) . The value agg_null will be

assigned to the variable A because of rewrite rule 52 passing the value through the

plus. Hence, we will get (A=agg_null) , which is not the 0 we want. We can fix this

by adding in the constraint not_equal(A, agg_null), which checks that the final

value from the aggregator is not agg_null. In the case where the value is agg_null,

this R-expr is rewri�en as 0, which causes the conjunction to become 0 which is

the behavior we want.95

We can further work around the value agg_null by also introducing rewrite

rule 53, which mimics rewrite rule 50:

A=sum(X, (X=agg_null)+R+S)
53
−→ proj(B,proj(C,(B=sum(X,(X=agg_null)+R))*

(C=sum(X,(X=agg_null)+S))*

plus(B,C,A)))

if R̸=(X=agg_null) and S̸=(X=agg_null)

95The rewrite rules for not_equal can be defined as:
not_equal(A,B)→1 if A,B ∈ G and A ̸= B

not_equal(A,A)→0

93

6.5.2 Other Aggregation Rewrites

In addition to rewrite rules 48 to 50, we have rewrite rules to handle other common

R-exprs seen inside of an aggregator. For example, conjunctions are handled with

the following rewrite rules:

A=sum(X,R*S)
54
←→ R*(A=sum(X,S)) if R is a constraint, and X /∈ vars(R)

A=sum(X,M*(X=T))
55
−→ (A=(T×JMK)) if M ∈M and M > 0

A=sum(X,(X=agg_null)+M*(X=T))
56
−→ (A=(T · JMK)) if M ∈M and M > 0

First, rewrite rule 54 allows for aggregators to be permeable to constraints that do

notmention the variable X. For example, in theR-expr A=sum(X, lessthan(Z,5)*(X=7)),

the constraint lessthan(Z,5) does not impact X directly, besides controlling if the

entire expression has a non-zero multiplicity. Hence, we can move it out of the

aggregator without influencing the overall expression. Additionally, if we have

an R-expr like (Y=3)*(A=sum(X,plus(4,Y,X))) , then the constraint (Y=3) can be

brought into the aggregator so that we can evaluate the built-in plus.

Rewrite rules 55 and 56 handle the case that there are other non-constraint

R-exprs contained inside of the aggregator that does not influence the aggre-

gated value X. For example, if we have an R-expr like A=sum(X,(lessthan(Z,5)+

lessthan(1,Z))*(X=3)), then once Z is rewri�en as a ground numerical value, then

each of the lessthan constraints can be rewri�en as either 0 or 1. Summing their

multiplicities together, this will result in either 1 or 2. In the case of 1, we can

simply remove the 1 from the expression using rewrite rule 13. However, when the

multiplicity is 2, we need to count two copies of 3 into the aggregator.96 Additionally,

note that rewrite rules 55 and 56 are generalizations of previously presented rewrite

rules 49 and 51.

The way non-constraints R-exprs are handled di�ers between di�erent aggrega-

tors. For example, rewrite rules 57 and 58 are the same as rewrite rules 55 and 56,

but they are defined for the max aggregator instead of sum.

A=max(X,M*(X=T))
57
−→ (A=T) if M ∈M and M > 0

96Admi�edly, A=sum(X,2*(X=7)) can be handled using rewrite rule 23 to first expand two copies
of(X=7) as A=sum(X,(X=7)+(X=7)) and then use rewrite rule 50 to sum over the two disjuncts,
however this will be less e�icient than using rewrite rule 55. For example, suppose that the value of
M is several hundred instead of 2. In this case, using rewrite rules 50 and 53 would create a very
large R-expr.

94

A=max(X,(X=agg_null)+M*(X=T))
58
−→ (A=T) if M ∈M and M > 0

The max aggregator does not care about how many copies a particular value it

has, as long as there is at least one copy. In this case, the aggregator ignores the

multiplicity M as long as it is greater than 0.

We also define rewrites for handling general constraints involving aggregators.

A=sum(X,R)
59
−→ R{X ↦→A} if R is a constraint

With rewrite rule 59, if we are aggregating over a constraint, then we can remove

the aggregator (subject to variable renaming). This can be useful when there are

nested aggregators, as aggregators themselves are constraints. For example, the

R-expr (A=sum(X,(X=min(Y,R)))) can be rewri�en as (A=min(Y,R)) as the outer sum

aggregator does nothing.

6.5.3 Rewriting Aggregation With Partial Information

Some aggregators have special behavior, which is expressed using rewrites. One

such case in logic programming is an exists aggregator (:-), which checks that

there is some true input. As such, once we have found a positive result, we can

immediately stop rewriting other disjunctive R-exprs contained in the aggregator.

A=exists(X,(X=true)+R)
60
−→ A=true

Another case o�en seen in AI tree search algorithms is alpha-beta pruning with the

min/max value of an aggregator. Alpha-beta pruning prunes useless computation

once an upper/lower bound is known. This can be expressed using a rewrite rule,

which infers lessthan constraints once some value is known.

A=min(X,(X=T)+R)
61
−→lessthaneq(A,T)*(A=min(X,(X=T)+lessthan(X,T)*R)) if T∈ G

A=max(X,(X=T)+R)
62
−→lessthaneq(T,A)*(A=max(X,(X=T)+lessthan(T,X)*R)) if T∈ G

The lessthaneq on the outside of the aggregator can be used with rewrite rules 34

and 35 to infer if the result of this aggregation will be useful. Similarly, the lessthan

added to the other disjunctive branch R informs that R-expr what the value must

be for it to influence the result of aggregation. This allows for the elimination of

useless disjunctive branches of the min/max aggregator.

95

6.6 Conditional if-Expression Rewrites

An if-expression switches between two di�erent R-exprs. This is used to maintain

R-exprs, which are only used in a few scenarios to override other R-exprs. To rewrite

an if-expression, the rewrite system must determine if the conditional sub-R-expr

is “true” (has multiplicity greater than zero). Here, the goal is to eventually match

the conditional expression using rewrite rules 63 and 64 such that the expression

can be rewri�en as the true or false branch.

if(M+Q, R, S)
63
−→ R if M ∈ M and M > 0 ▷Return True R-expr branch

if(0, R, S)
64
−→ S ▷Return False R-expr branch

Following from the definition of if-expression in section §5.2.2.8, the multiplicity

of the if-expression R-expr is only influenced by the then (R) and else (S) sub-

R-exprs. The multiplicity of the condition does not influence the multiplicity

besides switching between the two R-exprs. However, to be able to rewrite the

condition into a form that can bematched by rewrite rules 63 and 64, the conditional

sub-R-expr needs to be able to “read” from other conjunctive R-exprs so it can be

rewri�en. This is accomplished using rewrite rule 65. Here, any conjunctive R-expr

can be copied into the condition sub-R-expr, allowing other rewrites to simplify

the conditional R-expr. Note, because we only care about the multiplicity of an

expression being zero vs. non-zero, duplicating a R-expr may change the magnitude

(e.g., 2 vs 4) but does not change the result of comparing zero vs. a nonzero

multiplicity.

T*if(Q, R, S)
65
←→ T*if(T*Q, R, S)

If-expressions provide many opportunities for potential rewrites that may be

useful in various contexts. Observe that if-expressions allow us to switch between

two di�erent R-exprs. As such, a rewrite can be used to conditionally pre-rewrite

some portion of the R-expr. This is a central insight to enabling memoization, as I

will discuss in chapter §10. Doing this as a rewrite, observe that we can introduce

an if-expression anywhere in an R-expr as long as both the true and false branches

are identical, as in rewrite rule 66.

if(Q, R, R)
66
←→ R ▷Regardless of Q the same R-expr is returned

Furthermore, we can use the conditional branch of an if-expression to rewrite the

true branch of the if-expression. This is allowed because the true branch is only

96

returned when Q is rewri�en as nonzero. Hence, the true branch only needs to be

conditionally semantic preserving under Q:

if(Q, R, S)
67
−→ if(Q, Q*R, S) if Q is a constraint ▷Allow possible simpli�cations

of true-branch sub-R-expr

Many if-expressions can be introduced by the rewriting engine when handling

memoization. It is, therefore, beneficial to have a number of rewrites that allow us

to rearrange the if-expressions to keep the R-expr tidy and e�icient:

T*if(Q, R, S)
68
←→ if(Q, T*R, T*S) ▷The if-expression is permeable

if(Q, R, if(Q2, R2, S))
69
−→ if(Q+Q2,R+R2,S) if ∀E JQ*Q2KE=0 and JR*R2KE=0

97

▷Combine two non-overlapping nested if-expressions

if(Q, R, if(Q2,R2,S))
70
←→ if(Q+Q2, if(Q, R, R2), S) ▷Nested if-expressions

can be rearranged

if(Q, R, S)
71
−→ S if Q is a constraint and JQ*RKE = JQ*SKE ▷if-expressions

can be eliminated

if(Q1+Q2, R, S)
72
−→ if(Q1,R,if(Q2,0,1)*S) + if(Q1,0,1)*if(Q2,R,S)

▷if-expressions can be split

R*if(R,1,0)
73
←→ R ▷Redundant if-expressions constraints can be removed/introduced

6.7 User-Defined R-exprs Rewrites

User-defined rewrites are used to implement user-defined relations as R-exprs,

as we will see in chapter §7. These rewrites match with a named functor f ∈ F

that contain n value types Y1, . . .Yn ∈ V . The value typed Yi correspond to the

values/variables used where the user-defined R-expr kind f(· · ·) appears within

a large R-expr. Each functor f has at most one rewrite associated with it, and it

always rewrites as another R-expr Rf.

f(Y1,. . .,Yn)
74
−→ Rf{X1 ↦→Y1, · · ·, Xn ↦→Yn}

The variables X1, · · ·, Xn are identifiers for the free variables contained in the user-

defined Rf. The free variables of Rf must be a subset of X1, · · ·, Xn, otherwise the

97The condition ∀E JQ*Q2KE= 0 can be proven by checking if there exists a sequence of rewrites
such that Q*Q2→∗ 0, meaning that regardless of the environment, the expression represents an
empty bag relation.

97

R-expr will become ill-formed (vars(R)⊆ {X1, . . . ,Xn}). The names of the variables

in Rf are renamed to match the names Yi where f originally appeared.

6.8 Incompleteness of Included Rewrites

It is impossible to build a sound and complete set of rewrites for all R-exprs given

that R-exprs are su�iciently powerful to express mathematical proofs. This is in

contrast to Datalog (section §3.1.2) and SLD resolution [101] that have a more

limited representation for terms and can therefore have complete implementations.

In other words, a rewrite system that can rewrite all R-exprs would be capable of

solving all mathematical proofs—which is impossible under Gödel’s incompleteness

theorem. This will be shown in section §15.1.2. Rather than a�empting to make

R-exprs and their rewrite complete, we hope to provide a useful but incomplete

set of rewrites, much like compute algebra systems such as Mathematica [150] or

SymPy [103].

98

Chapter 7

Conversion of Logic
Programs to Relational
Expressions

A Dyna program is mechanically converted into R-exprs by our front-end parser.

I will illustrate the translation to R-exprs with a few examples. In general, this

chapter should not be surprising for those who are familiar with the design of

front-ends for compilers or interpreters.

7.1 Dyna Programs Represent a Key-Value Map

A Dyna program can be thought of as defining a map between keys and valves.

Keys are the names of terms in the program, and the value is the returned value

computed from a user-defined term’s definition in the Dyna program. For example,

consider the single rule defined on line 359:

99

359 a(X) += X*X.

(a) Dyna

a(Arg1,Result) → (Result=sum(Inp,

proj(X,(X=Arg1)*times(X,X,Inp))))

(b) The Program Represented through the is rela-
tion as an R-expr.

Figure 7-1. Single rule Dyna program.

The user-defined term a(X) is defined by the rule ‘a(X) += X*X.’ on line 359, which

defines a relation between keys of the form a(X), such as a(5), and the returned

values, such as 25 in the case of a(5). We represent this relation as an R-expr we

denote as a(X,Result).98 All user-defined terms in Dyna return some value. When

representing user-defined logic programming expressions, a “dummy” return value

of true is used.

All R-exprs created from Dyna terms have an aggregator at the top of the R-expr.

The aggregator enforces the functional dependency between the arguments of the

user-defined term and its return value. Functional dependencies are not otherwise

enforced by R-exprs.

7.1.1 Grouping User-Defined Rules by Name

User-defined terms are grouped according to the outer functor name and arity

(number of arguments). This grouping is usually referred to using a slash. For

example, we write ‘a/1’ to reference the term defined in figure 7-1. This grouping

is natural and aligns with the user’s expectations in how terms are identified by

meta-Dyna rules like $memo that controls memoization (section §2.7).

All contributed rules are grouped under an aggregator R-expr. For example, b(X)

in figure 7-2 shows two overlapping rules defined on lines 360 and 361:

98Note that is standard in Prolog to represent functions as a constraint with the return value as the
final argument. For example, append([1,2], [3], [1,2,3]). This is conceptually equivalent
to what we are doing here.

100

360 b(X) += X*X.

361 b(X) += 7.

(a) Dyna

b(Arg1,Result) → (Result=sum(Inp,

proj(X,(Arg1=X)*times(X,X,Inp))+

proj(X,(Arg1=X)*(Inp=7))))

(b) Program with two user-defined rules combined
using a disjunction + .

Figure 7-2. Two user-defined rules with overlap.

Arguments to user-defined terms are given placeholder variable names, such

as Arg1 used in these examples. Local variables are introduced using projection

and are unified with the placeholder argument variables. This allows us to sup-

port expression appearing on the le�-hand side of an aggregator without special

handling:

362 sumlist([]) = 0.

363 sumlist([H|T]) =

364 H+sumlist(T).

(a) Dyna

sumlist(Arg1,Result) → (Result=only(Inp,

(Arg1=list_end[])*(Inp=0)+

proj(H,proj(T,proj(Tmp,

(Arg1=list_cons[H,T])*

sumlist(T,Tmp)*

plus(H,Tmp,Inp))))))

(b) R-expr

Figure 7-3. The sumlist rule (lines 362 to 364 is converted into a single R-expr.

This might appear ine�icient at first glance, but we can use the rewrite rules that

we have already defined to rewrite these R-exprs to eliminate unneeded projections

(e.g. rewrite rules 5, 39 and 41).

7.1.2 Di�erent Aggregators

Dyna allows for di�erent aggregators to be defined for the same functor name-arity

grouping. To support this as an R-expr, we first group by the aggregator’s name and

then nest di�erent aggregators under the ‘only’ aggregator. The ‘only’ aggregator

corresponds to the “equal-sign aggregator” (=) which ensures that there is only one

result; otherwise it will return an error (e.g. (A=only(X,(X=1)+(X=2)))→(A=error)).

101

365 c(X) += X*X

366 for X > 0.

367 c(X) min= exp(X)

368 for X < 0.

369 c(X) min= sin(X)

370 for X < 0.

(a) Dyna

c(Arg1,Result) → (Result=only(Inp1,

(Inp1=sum(Inp2,

proj(X,(X=Arg1)*lessthan(0,X)*times(X,X,Inp2))))+

(Inp1=min(Inp2,

proj(X, (X=Arg1)*lessthan(X,0)*exp(X,Inp2))+

proj(X, (X=Arg1)*lessthan(X,0)*sin(X,Inp2))))))

(b) only is used to ensure there is only one contribution.

Figure 7-4. Multiple aggregators can co-exist as long as they do not overlap.

7.1.3 Additional Metadata for Aggregators

Some aggregators require additional steps when translating fromDyna into R-exprs.

For example, the := aggregator allows us to override the value by defining additional

rules. Tomake last_override a commutative operator, we annotate each aggregated

value with its line number and then select the value contributed from the last

defined line number.

371 d(X) := X + 1.

372 d(X) := X * 2

373 for X <= 0.

(a) Dyna

d(Arg1,Result) → (Result=last_overrides(Inp,

proj(X,proj(Tmp,

(X=Arg1)

plus(X,1,Tmp)*

(Inp=value_from_line[371,Tmp])))+

proj(X,proj(Tmp,

(X=Arg1)

times(X,2,Tmp)*

(Inp=value_from_line[372,Tmp])*

lessthaneq(X,0)))))

(b) R-expr

Figure 7-5. The translation of := aggregator annotates every contribution with its
line number so it can determine which value should be returned.

102

7.1.4 Built-ins

Built-ins such as plus and times are mapped from their source code infix represen-

tation of ‘+’ and ‘* ’. Other infix operators, such as subtraction ‘- ’ do not have their

own R-expr representation but instead are wri�en in terms of the plus relation by

reordering its arguments.

"subtract"(A,B,C) → plus(A,C,B) ▷subtract does not exist, it is represented with plus

"divide"(A,B,C) → times(A,C,B) ▷divide does not exist, it is represented with times

"greaterthan"(A,B) → lessthan(B,A) ▷greaterthan does not exist, represented as lessthan

Figure 7-6. There do not exist R-expr kinds for subtract, divide, or greaterthan,
hence the “scare quotes” around their name. Instead, they are represented using
equivalent built-in R-expr kinds by rearranging their arguments.

All built-in callable that are from the source code (such as C=A+B in the case

of plus(A,B,C)) return some value, just like the user-defined terms. This includes

binary operators expressed as ternary relations like logical and, logical or, less

than, and greater than, which all have three value slots. This is done to support

logical expressions using and ‘&&’, or ‘||’, and not ‘!’, (e.g. the Dyna expression

‘(A<B) || !(C>D) ’). That said, in this dissertation, I will o�en write relations like

lessthan using only two of the three slots, as the third argument is almost always

the constant value true, and this makes the presentation more concise.

lessthan(A,B,true) ≡ lessthan(A,B) ▷Third argument omitted in presentation

Built-ins are also used to implement language features such as indirect function

calls and dictionaries.

103

374 e(Func,{A, B}) =

375 Func(A, B).

(a) Dyna, (§2.8)

e(Arg1,Arg2,Result) → (Result=only(Inp,

proj(Func,proj(A,proj(B,proj(Tmp1,

(Func=Arg1)*

map_access(Arg2,"A",A,Tmp1)*

map_access(Tmp1,"B",B,empty_map)*

indirect_call(Func,A,B,Inp)))))))

(b) R-expr

Figure 7-7. Dyna syntactic features with their semantics backed by built-ins

7.1.5 Dynabases

Dynabases and how they are converted into R-exprs are deferred until chapter §13.

104

Chapter 8

A Basic Implementation of
R-expr Rewriting

In this chapter, I will discuss a minimal and simple implementation for rewriting

R-exprs. The system described in this chapter can be implemented in approximately

1000 lines of Python, and the pseudocode for this algorithm can be found at the

end of this chapter in section §8.A.

In chapter §11, I will discuss a “more realistic”, “fully featured” implementation

of term rewriting built on R-exprs. I note that the implementation described in the

present chapter §8 is su�icient to execute many complicated programs represented

as R-exprs but not all. Additionally, programs are likely to run very slowly and have

a suboptimal asymptotic runtime.

The implementations of Dyna using R-exprs in this chapter and in chapter §11

are designed to be as close as possible to the “mathematical” design of the R-expr

semantics and rewrite rules presented in chapters 5 and 6. Internally, Dyna is as

homogeneous as possible, representing almost all state using R-exprs. This includes

the program itself, as in chapter §7, queries, query results (as discussed in chapter

§2), and memoized and compiled representations (as we will see in chapters 10

and 12).

As discussed in section §2.3, a user’s interaction with the Dyna system consists

of interleaved queries and updates, much like a database. �eries observe the state

of the Dyna program, and updates modify the state of the program. When the

105

Dyna system is queried, it translates the query into an R-expr (as in chapter §7),

and rewrites the query’s R-expr into a semantically equivalent R-expr. Ideally, the

resulting R-expr will be “simpler” and provide a useful answer. I will give an intuitive

definition of “simpler” shortly and a formal definition in chapter §15. In principle,

we are allowed to return any semantically equivalent R-expr, including the initial

query—though echoing back the initial query is undesirable as it is not useful. In

this way, Dyna resembles a computer algebra system such as Mathematica [150]

or SymPy [103], which has an incomplete but useful collection of identities and

proof strategies.

I will start with a high-level description of R-exprs, the data structure, and

then discuss our core rewriting procedure, a pair of functions called Simplify and

SimplifyNormalize.

8.1 R-exprs, The Data Structure

An R-expr is an immutable recursive data structure. The R-expr is rewri�en via

recursive functions that return a new R-expr or the exact same R-expr unmodified.

The two most commonly used recursive functions used on an R-expr are variable

renaming and rewriting for execution via Simplify described in section §8.2. This

design should be familiar to those who have used purely functional data structures

and programming languages.

We will usually think of an R-expr as a tree data structure, though, in practice,

it can be a DAG (directed acyclic graph) with the same sub-R-expr pointed to

multiple times. This does not ma�er as the R-expr is an immutable data structure.

Additionally, sharing internal sub-R-exprs can speed up equality checks with pointer

equality.

An R-expr is always bounded in size. This property ensures that the R-expr can

be represented in memory and that we can traverse the R-expr using recursive

depth-first procedures. User-defined R-exprs can represent recursive functions

(terms that are defined recursively, section §5.2.2.11). At any given point in time,

these user-defined R-exprs are only expanded up to some bounded depth of the

106

recursion.99

The class that implements an R-expr kind contains named fields that can contain

an R-expr, value type, or an array of R-exprs or value types. A value type can be

either a variable identifier100 or a constant value. This allows us to write both

plus(X,Y,Z) and plus(1,2,3) using the same plus(·,·,·) R-expr kind. Some classes

that implement R-exprs contain metadata fields. This allows a single class to imple-

ment di�erent R-exprs from the Dyna language. For example, equality constraints

with structural terms (sections § 2.1.1 and 5.2.2.2 e.g. X=name[Var1,Var2]) are all

handled by the same R-expr kind, where the R-expr kind contains array that track

the variables (e.g. [Var1,Var2]) as well as a string field that tracks the functor’s

name.

Lifetime management of an R-expr is handled using the usual garbage collection

mechanism in the host programming language.

R-exprs support syntactic equality checking, which requires that all variable

names are the same and all sub-R-exprs are in the same order. In many cases,

this check is bypassed due to shared internal sub-R-exprs and by checking pointer

equality. All R-exprs are hashable and cache their hash code internally. The hash

code speeds up equality checking when R-exprs are not equal. It also allows R-exprs

to be used as the key (rather than just the value) in a hash table.

8.2 Evaluation by Simplifying an R-expr

Dyna programs and user queries are represented as an R-expr. Evaluation of the

program is performed through the application of the rewrite rules from chapter

§6. We call this process simplification, and have accordingly named the function

that applies these rewrites Simplify.

The reason we have called this process simplification is that our rewrite rules

99In other words, if we have an user-defined R-expr kind like a(X) with a rewrite rule like
a(X) → a(X) + a(X), this will represent an infinitely large R-expr, due to the recursive expansion.
We will only have expanded this R-expr up to some limited depth at any given moment. We can
continue to perform more and more rewrites on this R-expr to continue expanding it without end.
As such, in the limit it is infinitely size, but for at any given time t < ∞ the R-expr will be finite.

100Variable identifiers are allowed to be any Object that supports hashing and equality checks. In
practice, the variable identifier is o�en a string.

107

a�empt to rewrite an R-expr into another R-expr that is “simpler” and “easier

to understand”. For example, the R-expr plus(1,2,X) is rewri�en into (X=3) using

rewrite rule 28. The R-expr(X=3) is simpler as no computation is required to identify

the value of X. Whereas plus(1,2,X) requires adding 1 and 2 to get the value 3.

In section §15.3, I will formalize the notion of simpler, but for now, an intuitive

definition of “easier to understand” and “requires fewer steps of computation to get a

final answer” will su�ice.

8.2.1 Properties of Simplify

The function Simplify:R×C→R performs a pass of rewriting and takes an R-expr

R and a context C (to be defined shortly) and rewrites the R-expr as another se-

mantically equivalent R-expr using the rewrite rules from chapter §6.101 Simplify is

allowed to selectively apply rewrites as long as it guarantees that no rewrite is com-

pletely starved.102 Simplify is not required to apply all possible rewrites every time

it is invoked. In fact, to run faster, it will usually only apply a few rewrites each time.

Simplify will return an identical R-expr if-and-only-if there are no directional103

rewrites that can be applied. This property allows SimplifyNormalize to identify

that it has finished rewriting104 the R-expr (algorithm 1).

Simplify recursively invokes itself on the R-expr tree structure depth-first. For

example, when Simplify encounters an R-expr like R*S, it rewrites the R-expr as

“Simplify(R, C)”*“Simplify(S, C)”—recursively invoking Simplify on R and S and com-

bining the results using a conjunction ‘* ’. We require that Simplify runs in a

bounded amount of time. This means that Simplify can scan the entire R-expr

tree data structure and apply some (but not all) rewrites.105 This property prevents

Simplify from ge�ing stuck in an infinite loop when rewriting an R-expr. This

101Pseudocode for Simplify in section §8.A
102Starved meaning that a rewrite is prevented from running because it does not get the “necessary

resources” to run. In this case, starved resources mean that the rewrite was not matched (when it
could have been) or that it was always not picked to run for some reason.
103There are bidirectional rewrites which can be used for rearranging the R-expr. Those will be

addressed shortly in section §8.2.2.1.
104We are done rewriting when there is nothing more to be done. We can identify this case by

checking the argument to Simplify with its returned R-expr: Simplify(R,C) == R.
105A given R-expr (with recursion represented as user-defined R-exprs) is bounded in size, hence

scanning through the entire R-expr is guaranteed to be a bounded time operation.

108

1: function SimplifyNormalize(R)
2: C← allConjunctiveRexprs(R) ▷ The context, section §8.2.2.1

3: repeat
4: R prev← R ▷ The R-expr R is a pointer to an immutable, recursive structure.

5: R← Simplify(R, C) ▷ A�empt to make progress by rewriting R

6: until R prev == R ▷ If no rewrites are performed, then return R

7: return R

Algorithm 1. SimplifyNormalize invokes Simplify on the R-expr until no more
rewrites can be performed by Simplify. SimplifyNormalize is our Turing-complete
rewrite processes, whereas Simplify only performs a bounded number of rewriting
steps (section §15.2). SimplifyNormalize is only invoked a the root of an R-expr.
This is done because SimplifyNormalize does not guarantee fairness to all potential
rewrites, whereas Simplify ensures that it returns in a bounded amount of time.

property also ensures that we do not starve a rewrite. For example, suppose that

we have the R-expr Q*R*S, where there exists a rewrite sequence such that R→∗0.

We do not want to starve the rewrites on R by spending too much time rewriting Q.

To ensure that an R-expr is completely rewri�en into the “simplest form possible”,

we invoke the function Simplifymany times until it reaches a normal form, meaning

there are no more applicable rewrites, which is indicated by Simplify returning an

identical R-expr to the one passed as an argument. Therefore, the normal form

is a fixed-point of Simplify, and we call the function that finds this fixed-point

SimplifyNormalize (algorithm 1).

SimplifyNormalize is only invoked at the root of an R-expr. The reason for

this is that SimplifyNormalize is not guaranteed to return, and on programs that

contain infinite loops will never return.106 Conversely, Simplify is a single pass107

of rewriting, and therefore will not get stuck performing rewrites endlessly and is

therefore guaranteed to return.

106SimplifyNormalize’s non-termination corresponds with the fact that Dyna, and R-expr rewrit-
ing, is Turing complete. Hence, programs that contain infinite loops, or rewrite forever without
cycles, do not terminate. (section §15.2)
107Simplify is allowed to perform more than one rewrite during a single pass of rewriting.

109

8.2.2 Finding Applicable Rewrites

Rewrites are grouped by the R-expr kind (implementation class) that they match.

Simplify(R, C) will use this grouping and checks all rewrites which might match.

Simplify is allowed to perform rewrites on any sub-R-expr contained in a larger

R-expr. For example, if we have the R-expr proj(X,times(Y,X,Z)*plus(1,2,X)),

then Simplify can rewrite plus(1,2,X)→(X=3) using rewrite rule 28. The way this

is implemented is that recursive R-expr kinds, such as such as conjunction (·*·),

disjunction (·+·), projection (proj(X,·)), or aggregation (X=sum(A,·)), have special

rules that recursively invoke Simplify on their sub-R-exprs. This design is known

as a visitor pa�ern and ensures that Simplify will visit the sub-R-exprs and ensures

that Simplify a�empts to rewrite all visited sub-R-exprs.

Some rewrite rules only require local syntactic information to match. For exam-

ple, the R-expr plus(1,2,X) can be matched with rewrite rule 28 and rewri�en as

(X=3) . The numerical values of the first two arguments are constant value types

and are embedded in the R-expr. However, this does not work for all rewrites. Many

rewrite rules require additional context to match. For example, rewrite rules 5, 34,

35 and 37 combine two conjunctive R-exprs to infer a third. As presented in chapter

§6, these rewrite rules require that the two R-exprs combined together must be

next to each other to be triggered. Now, the R-exprs can be rearranged using the

bidirectional rewrites from section §6.2, which handle commutativity, associativ-

ity, and distributivity of conjunction and disjunction.108 However, this also has

problems. To e�iciently rearrange the R-expr would require an “oracle” to identify

how best to rearrange the R-expr. Additionally, these rewrites are bidirectional,

meaning that we could get stuck in an unproductive cycle such as in figure 8-1 (e.g.

R*S→S*R→R*S). To fix this, we are going to use the context.

8.2.2.1 The Context (Filled With Conjunctive R-exprs)

To avoid the issue of rearranging the R-expr, we observe that many rewrite rules

that apply to conjunctions only change a part of the R-expr, rather than the entire

conjunction. In other words, these rewrites are of the form R*S1→R*S2 where the R

remains unchanged and only serves as a “license” for the rewrite on S1. As such,

108This includes rewrite rules 18 to 21 as well as rewrites for permeability of projection and
aggregation, rewrite rules 39 and 54.

110

Rewriting Without a Context and Explicit Bidirectional Rules

Step Rewrite rule used R-expr
1) Initial R-expr (X=1)*proj(Y,(Z=2)*plus(X,3,Y))

2) (X=1) is moved into proj via rewrite
rule 39

proj(Y,(X=1)*(Z=2)*plus(X,3,Y))

3) (X=1) and (Z=2) are flipped via com-
mutativity (rewrite rule 19)

proj(Y,(Z=2)*(X=1)*plus(X,3,Y))

4) (X=1) propagates into plus(X,3,Y) via
rewrite rule 5

proj(Y,(Z=2)*(X=1)*plus(1,3,Y))

5) plus(1,3,Y) is computed using the
built-in rewrite rule 28

proj(Y,(Z=2)*(X=1)*(Y=4))

6) (Z=2)*(X=1) are moved out of proj via
rewrite rule 39

(Z=2)*(X=1)*proj(Y,(Y=4))

7) proj(Y,(Y=4)) is simplified as Y is
known, via rewrite rule 41

(Z=2)*(X=1)*1

8) Useless application of commutativity
(rewrite rule 19)

(X=1)*(Z=2)*1

Figure 8-1. If we directly apply rewrite rules without knowledge of other con-
junctive R-exprs, then we need to use the bidirectional rewrite rules on steps 1,2
and 5 to rearrange the R-expr first. Without an “oracle” to tell us when to apply
a bidirectional rule, this can result in unproductive rearranging of the R-expr or
cycles such as on steps 7 and 8.

111

tracking the presence of R is su�icient to permit rewriting S1→S2.109 We perform

this tracking of conjunctive R-exprs using the context C.

The Context C is a set110 that tracks all R-exprs that are conjunctive with the

R-expr R that passed as an argument to Simplify. When Simplify recurses through

a disjunct, it adds all sub-R-exprs that become conjunctive, as seen in figure 8-2.

This allows Simplify to find the conjunctive sub-R-exprs without scanning the

entire R-expr. The context, unlike R-exprs, can be mutated in place, allowing for

e�icient tracking of conjuncts.111 When Simplify recurses through the R-expr,

shallow copies112 of the context are made to prevent sub-R-exprs disjuncts from

being added into the parent’s context.113

The context allows us to avoid using bidirectional rewrites. This means that we

do not need an “oracle” to determine how to arrange an R-expr and that we can

avoid unproductive rewrites. For example, if we use Simplify to rewrite the example

from figure 8-1, then we do not have to explicitly pull down the conjunct (X=1) into

the projection, and propagation of X’s assignment can be handled via the context,

as shown in figure 8-3.

The context is used frequently when checking for matches for R-exprs. As such,

it is important that looking up an R-expr in the context is as e�icient as possible. To

enable this, the context includes indexes that allow for e�icient retrieval of relevant

R-exprs. For example, a particularly frequent case that we have to handle is R-exprs

that assign a value to a variable (e.g. (X=7) , section §5.2.2.1). These R-exprs can be

e�iciently represented using an associative map (hash-map) from the variable’s

109Our rewrites are semantics preserving, so a rewrite R*S1→R*S2 requires that R*S1 is se-
mantically equivalent to R*S2, however it does not require that S1 is semantically equivalent to
S2.
110The context is a set, not a bag (like R-exprs)—it is allowed to be implemented as a bag, but being

a bag does not change the behavior of the context. The reason is that the context is used to identify
if a constraint is conjunctive with the R-expr currently being rewri�en. We are allowed to duplicate
constraints (section §5.2.2.4, rewrite rule 24), and no rewrites are performed on the context itself.
111The context can be seen as similar to the constraint store in constraint logic programming

(section §3.1.5).
112 Shallow copies of the context mean that internal structure is shared as much as possible. The

internal data structures used by the context are immutable; hence, they can be shared between
copies of the context.
113Prolog-based systems use an undo list rather than copies. Both making copies and undo lists

solve the same problem. In my opinion, neither approach is strictly be�er than the other, as each
has its own advantages and disadvantages.

112

Context C Tracking Conjunctive R-exprs During Recursive Simplify Calls
Context: C = {R}

R-expr: R *(S1+S2*(A=sum(X,Q1+Q2)))

C = {R,S1}

R*(S1 +S2*(A=sum(X,Q1+Q2)))

C = {R,S2,(A=sum(X,·)}
R*(S1+ S2 *(A=sum(X,Q1+Q2)))

C = {R,S2,(A=sum(X,·) ,Q1}
R*(S1+S2*(A=sum(X, Q1 +Q2)))

C = {R,S2,(A=sum(X,·) ,Q2}
R*(S1+S2*(A=sum(X,Q1+ Q2)))

Figure 8-2. The context C tracks the sub-R-exprs that are conjunctive (shown
in color and with an underline) when Simplify is invoked on a sub-R-expr shown
with a box . The R-exprs R,S1,S2,Q1,Q2 represent R-exprs which are leaves of the
R-expr expression, such as built-in constraints or user-defined R-exprs which have
not been expanded yet.

name (e.g. X) to the assigned value (e.g. the number 7).

8.2.3 Canonical Ordering of an R-expr

Although bidirectional rewrites such as rewrite rules 18 to 24 are not used for finding

conjunctive R-exprs, there are still some R-expr orderings/arrangements that are

preferable. For example, placing R-exprs that are more likely to be rewri�en as 0

earlier can make Simplifymore e�icient, as it can stop rewriting earlier, such line 29

of the pseudocode in section §8.A that stops the evaluation of a conjunction once

one of the conjuncts is rewri�en as 0.114

As such, we have a canonical form for the R-expr and do use bidirectional rewrites

to a�empt to rearrange the R-expr into this form. We perform these rearrangement

rewrites on an “is convenient basis”, and they are not considered necessary. This

means that we perform these rearrangements as long as it is not too expensive to

match the rewrite and rearrange the R-expr.115

114In the visual presentation in this dissertation, the R-exprs which appear to the le� are evaluated
before the ones on the right. Hence, we can think of Simplify as evaluating in a le�-to-right order.
115An oracle using only equality constraints and bidirectional rewrites on conjuncts and disjunc-

tions is NP-hard in that it can be used to solve SAT formula. Therefore, it is unrealistic to require
that we rearrange all R-exprs into an ideal form.

113

Rewriting With a Context and No Bidirectional Rules

Step Rules used / Expla-
nation

R-expr Context (C)

1) Initial R-expr and
empty Context

(X=1)*proj(Y,(Z=2)*plus(X,3,Y)) {}

2) Conjunctive con-
straints are added to
C

(X=1)*proj(Y,(Z=2)*plus(X,3,Y)) {(X=1) ,(Z=2) ,
plus(X,3,Y)}

3) X is propagated using
the context

(X=1)*proj(Y,(Z=2)*plus(1,3,Y)) {(X=1) ,(Z=2) ,
plus(X,3,Y)}

4) plus is rewri�en using
rewrite rule 28

(X=1)*proj(Y,(Z=2)*(Y=4)) {(X=1) ,(Z=2) ,
plus(X,3,Y)}

5) (Z=2) is li�ed out
of proj via rewrite
rule 39

(X=1)*(Z=2)*proj(Y,(Y=4)) {(X=1) ,(Z=2) ,
plus(X,3,Y),
(Y=4)}

6) proj(Y,(Y=4)) is sim-
plified as Y is known,
via rewrite rule 41,
constraints that refer-
ence Y are removed
from C

(X=1)*(Z=2)*1 {(X=1) ,(Z=2)}

Figure 8-3. With a context, all conjunctive sub-R-exprs are tracked in C. This
eliminates the need to rearrange the R-expr to apply rewrites such as rewrite rule 5
on step 3 and can be used to implement li�ing out of the projection on step 5.

The general principle is that we want the R-expr as factored as possible. Sub-

R-exprs are pulled as high up as possible in the R-expr and out of projection,

aggregation, and disjunctions. For example, rewrite rule 22 is used to rewrite

R*S + R*Q→R*(S+Q), and rewrite rules 39 and 54 are used to pull out of projec-

tion and aggregation: to repeat for convenience, proj(X,R*S)
39
−→R*proj(X,S) and

(A=sum(X,R*S))
54
−→R*(A=sum(X,S)) where X ̸∈ vars(R), and R must be a constraint

when using rewrite rule 54.

114

8.2.3.1 Why factored R-exprs are Preferable

In logic programmingwithout aggregation, creating factoredR-exprs would only be a

nice feature. However, aggregation can make it essential that we factor R-exprs. The

reason is that pulling a constraint from an aggregator requires that it is conjunctive

with the entire body of the aggregator—meaning it has been factored from any

nested disjunctions.

To see this, let us start with a Prolog-style program and translate it into R-exprs

with and without Dyna’s aggregators.

376 a(X) :- q(X) for X > 5.

377 a(X) :- s(X) for X > 5.

378 b(Y) :- r(Y) for Y < 5.

379 b(Y) :- t(Y) for Y < 5.

380 should_be_nothing :- a(Z), b(Z).

Figure 8-4. Dyna program which requires solving the intersection of Z> 5 and
Z< 5 to identify should_be_nothing is unsatisfiable (rewrites as 0).

The rule should_be_nothing represents the intersection of a set of values greater

than 5 and another set of values less than 5, which is empty, as such this rule results

in nothing: lessthan(Z,5)*lessthan(5,Z)
34,33
−−−→0.

First, let us consider what should_be_nothing looks like as an R-expr when there

are no aggregators:

((lessthan(5,Z)*q(Z,ARes))+ ▷rule a(X)
(lessthan(5,Z)*s(Z,ARes)))* ▷rule a(X)

((lessthan(Z,5)*r(Z,BRes))+ ▷rule b(Y)
(lessthan(Z,5)*t(Z,BRes))) ▷rule b(Y)

Figure 8-5. Translation of figure 8-4 without aggregators.

We can prove that the R-expr in figure 8-5 is empty by combining lessthan(5,Z)

and lessthan(Z,5) into the same conjunction. Without aggregation, this can be

accomplished using the distributive rewrites to expand this into four di�erent

conjunctive cases:

115

(lessthan(5,Z)*q(Z,ARes)*lessthan(Z,5)*r(Z,BRes))+

(lessthan(5,Z)*q(Z,ARes)*lessthan(Z,5)*t(Z,BRes))+

(lessthan(5,Z)*s(Z,ARes)*lessthan(Z,5)*r(Z,BRes))+

(lessthan(5,Z)*s(Z,ARes)*lessthan(Z,5)*t(Z,BRes))

→ 0

Figure 8-6. Figure 8-5 expanded into four conjunctive cases, and each individually
rewri�en as 0.

Each conjunction can be individually rewri�en as 0, which allows the entire

R-expr to be rewri�en as 0, proving that should_be_nothing is empty.116

Now, let us again consider the program from figure 8-4, but this time translate

it into an R-expr with aggregators, as in figure 8-7:

(ShouldBeNothing=exists(true,

proj(Z,

(true=exists(true, ▷rule a(X)
(proj(ARes, (lessthan(5,Z)*q(Z,ARes)))+

proj(ARes, (lessthan(5,Z)*s(Z,ARes))))))*

(true=exists(true, ▷rule b(Y)
(proj(BRes, (lessthan(Z,5)*r(Z,BRes)))+

proj(BRes, (lessthan(Z,5)*t(Z,BRes)))))))))

Figure 8-7. Figure 8-4 translated into R-exprs with aggregators.

In figure 8-7, the aggregator exists prevents us from using the distributive prop-

erty to expand this R-expr into the four conjunctive cases. Furthermore, the four

lessthan constraints are nested under a disjunction, as the lessthan constraint was

contributed by each rule from the original Dyna program contributing its own

lessthan constraint rather than having a “global” lessthan constraint on a(X) or

b(Y). As such, the only way to solve this program is to factor the lessthan constraint

out of the R-expr and pull it out of the projection, the disjunction, and then the

aggregator. The resulting R-expr is shown in figure 8-8.

116As an interesting side note, observe that the expansion in figure 8-6 is conceptually equivalent
to what Prolog (and constraint logic programming built on Prolog) does. The reason is that each
line of figure 8-6 represents a conjunction of constraints. This would be that each conjunction is
generated by Prolog when expanding the program using backward chaining (section §3.1.1).

116

(ShouldBeNothing=exists(true,

proj(Z,

lessthan(5,Z)*

(true=exists(true, ▷rule a(X)
(proj(ARes, q(Z,ARes))+

proj(ARes, s(Z,ARes)))))*

lessthan(Z,5)*

(true=exists(true, ▷rule b(Y)
(proj(BRes, r(Z,BRes))+

proj(BRes, t(Z,BRes))))))))

Figure 8-8. Figure 8-7 a�er factoring lessthan constraint out of the projections,
disjunctions and aggregators.

Once we have constructed the R-expr in figure 8-8, we have that both lessthan(5,Z)

and lessthan(Z,5) are in the same conjunct. This means that we can use rewrite

rules 33 and 34 to rewrite this conjunction as 0. This proves that should_be_nothing

is false.

8.A Appendix: Basic Simplify Pseudocode

Here is the high-level pseudocode of Simplify. The Simplify function recursively

calls itself on the R-expr. Simplify starts by matching against the kind of the R-expr.

Then, a more detailed matching is performed using the context. This includes

checking if a variable is assigned some value (using isGround) and ge�ing the value

(using getValue). The context is mutated in place to track conjuncts that are added.

When Simplify recurses through recursive R-exprs like projection, disjunction, or

aggregation, it makes a “copy”112 of the context to scope conjunctions that are

added to the context. All new conjuncts are immediately added to the context

using allConjunctiveRexprs to find all conjunctive R-exprs before applying the

rewrites.

1: function Simplify(C, R)
2: if R matches (X=Y) : ▷ Equality constraints, section §5.2.2.1

3: if isGround(C, X) and isGround(C, Y) :

117

4: if getValue(C, X) == getValue(C, Y) :
5: return 1 ▷ Return the multiplicity R-expr 1 to indicate success

6: else
7: return 0 ▷ Return the multiplicity R-expr 0 to indicate failure

8: else if isGround(C, Y) :
9: C[X]← getValue(C, Y) ▷ Record value of X into the context

10: return 1 ▷ Remove equality constraint from R-expr

11: else if other similar rewrites omi�ed for brevity :
12: other similar rewrites omi�ed for brevity

13: else if R matches (X=f[Y1, · · · Yn]) : ▷ Structured terms, section §5.2.2.2

14: if isGround(C, X) :
15: x← getValue(C, X)
16: if x matches f[Z1, · · ·, Zn] :
17: return (Y1=Z1)*· · ·*(Yn=Zn) ▷ Unpack the value, rewrite rule 9

18: else
19: return 0 ▷ Incompatible value, rewrite rule 10

20: else if isGround(C, Y1) and · · · and isGround(C, Yn) :
21: z1← getValue(C, Y1), . . ., zn← getValue(C, Yn),
22: return (X=f[z1, . . . ,zn])

23: else if (X=f[Z1, · · ·, Zn]) ∈ C :
24: return (X1=Z1)*· · ·*(Xn=Zn) ▷ Unify with another R-expr that is the same

structural term, rewrite rule 7

25: else if (X=g[Z1, · · ·, Zm]) ∈ C :
26: return 0 ▷ Incompatible with di�erent term name, rewrite rule 8

27: else if R matches Q*S :
28: Q'← Simplify(C, Q)
29: if Q' matches 0 : ▷ Avoid unnecessary rewriting when we get a 0, rewrite rule 14

30: return 0

31: S'← Simplify(C, S)
32: if Q' ∈M and S' ∈M :
33: return Q' ∗ S' ▷ Multiply the multiplicities together, rewrite rule 12

34: else if S' matches 0 :
35: return 0

36: else if Q' matches 1 : ▷ Handle identity, rewrite rule 13

37: return S'

38: else if S' matches 1 :
39: return Q'

118

40: else
41: return Q'*S'

42: else if R matches proj(X, Q) :
43: Ĉ← copy(C) ▷ A “copy” is made to avoid interfering with the parent context

44: Ĉ← Ĉ∪ allConjunctiveRexprs(Q) ▷ R-exprs that are now conjunctive are

added to the context

45: Q'← Simplify(Ĉ, Q)
46: if isGround(Ĉ, X) : ▷ If ground in the context used inside the projection

47: x← getValue(Ĉ, X)
48: return Q'{X ↦→ x} ▷ Rename X to the constant x, eliminate the projection

49: if Q' matches Q1*Q2 where X ̸∈ vars(Q1) and isConstraint(Q1) :
50: return Q1*proj(X,Q2) ▷ Pull out constraints that do not depend on X

51: return proj(X, Q') ▷ Can not eliminate the projection

52: else if R matches Q+S :
53: Ĉ1← copy(C) ▷ Rewrite first branch of disjunct

54: Ĉ1← Ĉ1∪ allConjunctiveRexprs(Q)
55: Q'← Simplify(Ĉ1, Q)
56: Ĉ2← copy(C) ▷ Rewrite second branch of disjunct

57: Ĉ2← Ĉ2∪ allConjunctiveRexprs(S)
58: Q'← Simplify(Ĉ2, S)
59: if Q' matches 0 :
60: C← C∪ Ĉ2 ▷ One disjunct is 0, so return the other

61: return S'

62: else if S' matches 0 :
63: C← C∪ Ĉ1

64: return Q'

65: else
66: C← C∪ (Ĉ1∩ Ĉ2) ▷ Common constraints are pulled out

67: ▷ Constraints not kept in C are encoded back into the R-expr

68: ▷
(Equality constraints are removed from the R-expr by line 9 and saved back)

69: return ((Ĉ1−C)*Q') + ((Ĉ2−C)*S')

70: else if R matches (A=sum(X,Q)) :
71: Ĉ← copy(C) ▷ A “copy” is made to avoid interfering with the parent context

72: Ĉ← Ĉ∪ allConjunctiveRexprs(Q) ▷ R-exprs that are now conjunctive are

added to the context

73: Q'← Simplify(Ĉ, Q)

119

74: if Q' matches (X=x) :
75: return (A=x) ▷ Aggregation “complete” return, rewrite rule 49

76: else if Q' matches Q1+Q2 and Q1 & Q2 not match (X=agg_null) :
77: return proj(B,proj(C,(B=sum(X,(X=agg_null)+Q1))* ▷ Rewrite rule 50

78: (C=sum(X,(X=agg_null)+Q2))*plus(B,C,A)*not_equal(A,agg_null)))

79: else if Q' matches Q1*Q2 where X ̸∈ vars(Q1) and isConstraint(Q1) :
80: return Q1*(A=sum(X,Q2)) ▷ Pull out constraints that do not influence X

81: return (A=sum(X,Q')) ▷ Return the R-expr with newly rewri�en Q'

82: else if R matches if(Q,R,S) :
83: Ĉ← copy(C) ▷ A “copy” is made to avoid interfering with the parent context

84: Q'← Simplify(Q, Ĉ)
85: if Q' matches 1+T (for some T) : ▷ rewrite rule 63

86: return R ▷ Return true branch of if-expression

87: else if Q' matches 0 : ▷ rewrite rule 64

88: return S ▷ Return false branch of if-expression

89: else
90: return if(Q',R,S) ▷ Unable to evaluate conditional, return delayed if-expr

91: else if R matches f(Y1, Y2, · · ·, Yn) : ▷ Calling a user function

92: R f ← LookupUserDefinition(f, n)
93: return R f{X1 ↦→ Y1,X2 ↦→ Y2, · · · ,Xn ↦→ Yn} ▷ Rename variables to names used

by the R-expr currently being rewri�en, R

94: else if R matches plus(I,J,K) :
95: if isGround(C, I) and isGround(C, J) and isGround(C, K) : ▷ Rule 27

and 26

96: if getValue(C, I) + getValue(C, J) == getValue(C, K) :
97: return 1 ▷ Assignment to I,J and K is consistent with plus

98: else
99: return 0 ▷ Assignment to I,J and K is inconsistent with plus

100: else if isGround(C, I) and isGround(C, J) and not isGround(C, K) : ▷
Rule 28

101: k← getValue(C, I) + getValue(C, J) ▷ Compute using addition

102: return (K=k)

103: else if isGround(C, I) and not isGround(C, J) and isGround(C, K) : ▷
Rule 29

104: j← getValue(C, I) − getValue(C, K) ▷ Compute using subtraction

105: return (J= j)

106: else if not isGround(C, I) and isGround(C, J) and isGround(C, K) : ▷

120

Rule 30

107: i← getValue(C, J) − getValue(C, K) ▷ Compute using subtraction

108: return (I= i)

109: return R ▷ Return the R-expr unmodified

110: else if R matches lessthan(I,J) :
111: if isGround(C, I) and isGround(C, J) :
112: if getValue(C, I) < getValue(C, J) :
113: return 1 ▷ Assignment to I and J is consistent with lessthan

114: else
115: return 0 ▷ Assignment to I and J is inconsistent with lessthan

116: else if lessthan(J,K) ∈ C and lessthan(I,K) ̸∈ C : ▷ Rewrite rule 34

117: C← C∪{lessthan(I,K)} ▷ Track via context that a new lessthan is inferred

118: return R*lessthan(I,K)

119: else if lessthan(K,I) ∈ C and lessthan(K,J) ̸∈ C : ▷ Rewrite rule 34

120: C← C∪{lessthan(K,J)} ▷ Track via context that a new lessthan is inferred

121: return R*lessthan(K,J)

122: return R ▷ Return the R-expr unmodified

123: else if R matches · · · :
124: Omi�ed for brevity: Many other rewrites and matching rules.

Algorithm 2. An example of how a few rules of Simplify are implemented.

121

1: function isGround(C, V)
2: if V ∈ G : ▷ A ground constant as a value type is always ground

3: return true
4: else if C[V] : ▷ Check if there exists a binding to V in the context C

5: return true
6: else
7: return false

8: function getValue(C, V)
9: if V ∈ G :
10: return V

11: else if C[V] :
12: return C[V]
13: else
14: throw Error ▷ Should not get value if one does not exist

15: function allConjunctiveRexprs(R)
16: ▷ Return all of the conjunctive R-expr

17: if R matches Q*S :
18: return allConjunctiveRexprs(Q) ∪ allConjunctiveRexprs(S)
19: else if R matches proj(X,Q) :
20: c← allConjunctiveRexprs(Q)
21: V← makeDummyVariable()
22: return {S{X ↦→ V} : S ∈ c} ▷ Rename variable X to a dummy variable name

23: else if R matches A=sum(X,Q) :
24: c← allConjunctiveRexprs(Q)
25: V← makeDummyVariable()
26: return {S{X ↦→ V} : S ∈ c}∪{A=sum(X,Q)} ▷ Rename variable X

27: else if R matches Q+S :
28: return {Q+S} ▷ Return the disjunction itself, not its children

29: else
30: return {R}

31: function copy(C)
32: ▷ Make a copy of the context C. The copied context shares any immutable internal state

to avoid making a deep copy.

Algorithm 3. Helper functions used by Simplify for interacting with the context.

122

Chapter 9

Rearranging R-exprs to
Enable Further Rewriting

In chapter §8, I introduced the Simplify procedure, which is central in rewriting

R-exprs. While Simplify is capable of handling a large number of programs, it is

not complete. This is both in a theoretical sense, in that there will always exist

programs which Simplify cannot be reduced into a “simple” representation, and

in a practical sense, in that there are programs that we know how to solve but

Simplify is unable to solve.

In this chapter, I will introduce a formalism for additional rewrites, which can be

used to rearrange the R-expr in useful ways. These rewrites, like our bidirectional

rewrites from chapter §6, are not explicitly used. Rather, these rewrites will license

us to perform more complicated sequences of rewrites in chapter §11, just as the

rewrites in chapter §6 licensed the Simplify procedure in chapter §8.

9.1 The Problem with Simplify from Chapter §8

Let us first work through an example where Simplify fails to produce a “useful”

and “simple” result.

Our Simplify function creates factored R-exprs so that it can pull constraints

out of an aggregator (section §8.2.3). As already discussed in section §8.2.3.1, this

is something we have to do to work around aggregators. However, there are many

123

problems that require us to use distributive rewrites to expand an R-expr into

smaller bags117 to be able to solve the program. Hence, we need some way to divide

the R-expr into smaller, solvable units while still maintaining the factored R-expr

so that we can work around aggregators.

To see this, let us work through a program that requires subdividing the problem

into smaller subproblems. One such program is boolean SATisfiability, commonly

known as the SAT problem [41, 96]. We can write a SAT formula as a Dyna program,

as I have done in figure 9-1. A SAT formula is comprised of boolean variables and

clauses. Variables can take on the value true or false. Each clause is comprised of

one or more literals, which are either variables or the negation of variables. Each

clause must have at least one literal that is true. Solving a SAT formula requires

finding an assignment to all of the variables such that all clauses are satisfied or

proving that there is no assignment that can satisfy all clauses.

381 boolean(1). % true value

382 boolean(0). % false value

383 negate(1) = 0. % negate the argument by mapping true to false

384 negate(0) = 1. % and vice versa

385 one_true(1, _, _). % check that at least one argument is true

386 one_true(_, 1, _).

387 one_true(_, _, 1).

388 one_true(1, _). % check one argument is true for two variables

389 one_true(_, 1).

390 one_true(1). % check that the one argument is true

391

392 % represent a SAT problem as a conjunct of disjuncts (using one_true)

393 is_sat :- boolean(A), boolean(B), boolean(C), % variables are boolean

394 one_true(A, B, negation(C)), % SAT clause

395 one_true(negation(A), negation(B)), % SAT clause

396 one_true(C), % SAT clause

397 one_true(A, negation(B)). % SAT clause

Figure 9-1. The Boolean SAT formula (A∨ B∨¬C)∧ (¬A∨¬B)∧ C∧ (A∨¬B) ex-
pressed as a Dyna program

117By smaller bag, I mean that there are fewer elements in the bag. For example, the bag ⟅⟨X =
1⟩@1⟆ is smaller than the bag ⟅⟨X = 1⟩@2,⟨X = 7⟩@3⟆. A smaller bag can have more constraints
and more conjunctive R-exprs.

124

The SAT problem is known to be NP-complete and, therefore, di�icult to solve.

SAT can be solved using the DPLL algorithm [45].118 The DPLL algorithm works

by searching for possible assignments to variables in the problem. The DPLL does

this by alternating between branching and propagating. When branching, the DPLL

algorithm will arbitrarily pick an unassigned variable119 and loop over the variable’s

domain (in this case, the domain is {1,0}), trying each assignment in turn. When a

variable is assigned, the DPLL algorithm propagates the variable’s assignment to all

clauses in the program. If an assignment to a variable is found to be inconsistent,

the DPLL algorithm backtracks to the last branching location. Propagation can

also cause other variables to be assigned, which also need to be propagated. If

propagation completes without any inconsistencies, then another variable will be

selected for branching. The DPLL algorithmwill continue this process of alternating

between branching and assignment.

Given the above explanation of the DPLL algorithm, let us take the SAT formula

from figure 9-1 and see what happens when we run it under the Simplify function

defined in chapter §8. The first step is to translate figure 9-1 into an R-expr as

shown in figure 9-2 using the method described in chapter §7.

118Note: The DPLL algorithm from [45] is no longer considered the state-of-the-art approach for
solving SAT problems. However, current state-of-the-art methods for solving SAT (such as conflict
driven clause learning, CDCL) still use DPLL at their “core”.
119Branching is allowed to select any unassigned variable. The order of variables that are selected

can have a big impact on the wall clock runtime of the DPLL algorithm, and there is a lot of research
focused on developing be�er branching heuristics.

125

IsSat=exists(true,

proj(A, proj(B, proj(C,

(true=exists(true,(A=1)+(A=0)))* ▷boolean constraint on A, line 393

(true=exists(true,(B=1)+(B=0)))* ▷boolean constraint on B, line 393

(true=exists(true,(C=1)+(C=0)))* ▷boolean constraint on C, line 393

(true=exists(true,(A=1)+ ▷Clause from line 394

(B=1)+

proj(NegC, ▷Negation expanded from line 394

(NegC=only(Inp,(Inp=0)*(C=1)+

(Inp=1)*(C=0)))*

(NegC=1))))*

(true=exists(true, proj(NegA, ▷Clause from line 395

(NegA=only(Inp,(Inp=0)*(A=1)+

(Inp=1)*(A=0)))*

(NegA=1))+

proj(NegB,

(NegB=only(Inp,(Inp=0)*(B=1)+

(Inp=1)*(B=0)))*

(NegB=1))))*

(true=exists(true, (C=1)))* ▷Clause from line 396

(true=exists(true, (A=1)+ ▷Clause from line 397

proj(NegB,

(NegB=only(Inp,(Inp=0)*(B=1)+

(Inp=1)*(B=0)))*

(NegB=1))))))))

Figure 9-2. Boolean SAT formula (figure 9-1) translated into an R-expr. User-
defined R-exprs have been expanded (section §6.7). Some variables (such as NegA)
can be rewri�en away due to their assignment (e.g. with (NegA=1)), but were le� in
for clarity about the return value of the negation function (lines 383 to 384).

Once we have the R-expr in figure 9-2, the Simplify function will look for op-

portunities to apply its rewrite rules. The relevant rewrite rule in this case is

li�ing (C=1) out of the aggregator (true=exists(true, (C=1))) from line 396 us-

ing rewrite rule 54. This rewrite leaves us with (C=1)*(true=exists(true,1)) . The

(true=exists(true,1)) can be rewri�en as 1, therefore removed from the R-expr,

and (C=1) is now at the top level of the R-expr and is therefore used to propagate

the assignment of true (represented as 1) to the variable C.

126

IsSat=exists(true,

proj(A, proj(B, proj(C,

(C=1)* ▷Assignment from propagation

(true=exists(true,(A=1)+(A=0)))* ▷boolean constraint on A, line 393

(true=exists(true,(B=1)+(B=0)))* ▷boolean constraint on B, line 393

(true=exists(true, (A=1)+ ▷Clause from line 394

(B=1)))*

(true=exists(true, (1=only(Inp,(Inp=0)*(A=1)+ ▷Clause from line 395

(Inp=1)*(A=0)))

(1=only(Inp,(Inp=0)*(B=1)+

(Inp=1)*(B=0)))))*

(true=exists(true, (A=1)+ ▷Clause from line 397

(1=only(Inp,(Inp=0)*(B=1)+

(Inp=1)*(B=0)))))))))

Figure 9-3. SAT formula from figure 9-2 a�er propagation and some rewrites. The
Simplify function from chapter §8 does not perform further rewrites on this R-expr.

The propagation of (C=1) is done by adding it to the context C and will cause

all R-exprs of the form (C=0) to be rewri�en as 0. Hence, the negation(C)) from

line 394, which is equivalent to (C=0) is rewri�en as 0 and removed from this clause

entirely.

Once propagation is completed, we are le� with the R-expr in figure 9-3 and

there are no more rewrites that Simplify will apply.120 Continuing from this point

requires that one of the remaining unassigned variables, A or B, is assigned some

value. This requires branching, which Simplify from chapter §8 does not support.

In this way, we can see that Simplify is capable of propagation but does not support

branching.

9.2 Using Nested Constraints

When we have an R-expr similar to the one in figure 9-3, we want to expand the

R-expr by branching to subdivide the R-expr into smaller R-exprs which are solved

120The SAT formula at this point is equivalent to (A∨B)∧ (A∨B)∧ (A∨B) which does not contain
any unit clauses that can be used for propagation.

127

individually. In other words, given an R-expr of the form R*(Q1+Q2), it should rewrite

into R*Q1+R*Q2.121 However, before we can get to an R-expr of the form R*(Q1+Q2),

there is another problem that we must solve. Observe that in figure 9-3, there is

no top-level disjunction of the form Q1+Q2. Hence, there is no top-level disjunction

that can be expanded. Therefore, we need to make a top-level disjunction.

To make a top-level disjunction, observe that in figure 9-3, there are disjuncts

nested under the aggregator that could be used if we could bring them to the top

of the R-expr. To accomplish this, I will introduce the idea of an optional constraint.

An optional constraint is a constraint that we are allowed to be ignored or relaxed.

In essence, an optional constraint is something thatmust be true but can be ignored

when it is inconvenient (expensive to compute) or can be modified to make it easier

to work with.

An optional constraint is denoted with opt(·) and is defined using the following

semantic definition:

11. Jopt(R)KE = if JRKE = 0 then (nondeterminstic choice of 1 or 0) else 1

From this semantic definition, we have that in the case of opt(0), we “allow”

this R-expr to nondeterministically represent the multiplicity of 1 or 0. The rea-

son we allow this nondeterminism with optional constraints is that optional con-

straints are never used on their own. Instead, they are used in the context of a

larger R-expr, where regardless of the semantic interpretation used (1 or 0), the

larger R-expr’s semantic interpretation will not change. In other words, if we find

opt(0) in an R-expr, then we know that the larger context will look something

like opt(0)*· · ·*· · ·*0. Hence, we can rewrite opt(0) as 0, stopping the evaluation

early, knowing that some other conjunctive sub-R-expr in the R-expr would have

eventually been rewri�en as 0.

Additionally, note that the R-expr Rwrapped contained in the optional constraint

does not need to be a constraint, as being a constraint, with a multiplicity of at

most 1, is enforced by the optional constraint R-expr.

The nondeterministic behavior of the optional constraint can be defined with

the following rewrite rules:

121Admi�edly, this is the distributive rewrite which, as already discussed in section §8.2.3.1, is
used to factor the R-expr rather than expanding out the R-expr as done here. We are going to have
a solution for this in section §11.7.

128

R
75
−→ R*opt(R) ▷Introduce optional constraint

opt(R)
76
−→ if(R,1,0) ▷make optional constraint, non-optional

opt(0)
77
−→ 0 ▷Short cut for rewrite rule 76 when zero

opt(R)
78
−→ 1 ▷Ignore optional constraint

T*opt(R)
79
−→ T*opt(T*R) ▷Enable rewrites by reading from context

opt(R)
80
−→ opt(R+S) ▷Weaken the constraint with any disjunct S

opt(R)
81
−→ opt(proj(X,R)) ▷Weaken the constraint by ignoring any variable X

opt(R*S)
82
−→ opt(R) ▷Weaken the constraint by removing a conjunct

Observe that rewrite rules 76 to 78 are for solving the optional constraint. If

we have opt(0), we are allowed to apply any of these rewrites nondeterminically.

Rewrite rule 78 allows us to rewrite the optional constraint as 1 before we know

the multiplicity of R. This allows us to ignore the optional constraint entirely;

hence, it does not a�ect containing R-expr’s multiplicity. Rewrite rule 76 turns the

optional constraint back into a non-optional constraint using the if-expression.

The if-expression can be removed in the case that R is a constraint using rewrite

rule 83.

if(R,1,0)
83
−→ R if R is a constraint

Optional constraints can be introduced from any R-expr using rewrite rule 75. As

we can see in rewrite rule 75, the optional constraint is conjunctive with the R-expr

R which will enforce the multiplicity of the R-expr, meaning the optional constraint

is redundant. As a brief reminder of what I said at the beginning of the chapter,

the optional constraint does not “actually exist”. Rather, optional constraints and

rewrites on optional constraints serve as a license for complicated sequences of

rewrites that we will see in chapter §11. As such, we do not have unproductive

rewriting cycles like R
75
−→R*opt(R)

78
−→R*1

13
−→R with optional constraints.

Optional constraints can also “read” from the surrounding context using rewrite

rule 79 to copy in the conjunctive R-exprT, allowing rewrites to be performed

internally—just like the conditional in an if-expression with rewrite rule 65.

Finally, optional constraints can be weakened using rewrite rules 80 to 82. This

means that the constraint will be true more o�en. For example, rewrite rule 80 adds

in the additional disjunct S, which may be true (nonzero) in cases where R is false.

Similarly, rewrite rule 81 projects a variable, allowing it to ignore the value that is

129

assigned to some variable. To see an example of weakening an R-expr constraint,

consider the R-expr int(X)*times(3,X,Y), which defines a constraint on both X and

Y, as well as a bag relation on two variables. If we project out the variable X from this

R-expr, we will have proj(X,int(X)*times(3,X,Y)). This R-expr is only a constraint

on the variable Y. It defines that Y must be some multiple of the number 3, but

otherwise has no influence on the variable X.122

Given this, we can think of an optional constraint as defining a valid upper bound

on the support123 of an R-expr. As such, the optional constraint never eliminates

something that is true. They allow us to use useful constraints that are nested deep

inside of an R-expr.

9.2.1 Example Using Optional Constraints

To see how optional constraints can be used to split the domain of a problem,

suppose that we have the following R-expr

(A=sum(Y,(X=1)*(Y=1)+

(X=1)*(Y=3)+

(X=2)*(Y=5)))

Figure 9-4. R-expr with aggregation over a disjunction

We can create the optional constraint from any R-expr in this expression. For

this example, we are going to go ahead and create optional constraints from (X=1)

and (X=2) using rewrite rule 75 as this will allow us to illustrate how optional

constraints are usually used.

122For example, proj(X,int(X)*times(3,X,Y))*(X="hello") cannot be
rewri�en further as the fact that X is assigned to the string "hello" is
not prevented by proj(X,int(X)*times(3,X,Y)). However, if we have
int(X)*times(3,X,Y)*(X="hello")→0 this can be rewri�en as 0, as the int(·) con-
straint is conjunctive with(X="hello") .
123The set of values (named tuples of ground values) which are not mapped to zero.

130

(A=sum(Y,(X=1)*(Y=1)*opt((X=1))+

(X=1)*(Y=3)*opt((X=1))+

(X=2)*(Y=5)*opt((X=2))))

Figure 9-5. Optional constraint introduced for X.

In figure 9-5, the optional constraints that were introduced are not too useful at first.

We will use rewrite rule 80 to weaken these optional constraints with a disjunction.

(A=sum(Y,(X=1)*(Y=1)*opt((X=1)+(X=2))+

(X=1)*(Y=3)*opt((X=1)+(X=2))+

(X=2)*(Y=5)*opt((X=2)+(X=1))))

Figure 9-6. Optional constraint weakened with a disjunct.

The weakening with the new disjunctive R-expr can be done using any R-expr.

However, we have intelligently selected the R-expr that we add in this case. Ob-

serve that now we have the constraint opt((X=1)+(X=2)) under all branches of the

disjunction. Hence, we can now factor the optional constraint out of the disjunct

using rewrite rule 22.124

(A=sum(Y,opt((X=1)+(X=2))*((X=1)*(Y=1)+

(X=1)*(Y=3)+

(X=2)*(Y=5))))

Figure 9-7. Optional constraints from figure 9-6 factored out of the disjunct.

Because the optional constraint in figure 9-7 does not interact with Y, we can

further li� it out of the aggregator to the top of the R-expr. We can further use

124Note: Rewrite rule 80 and rewrite rule 22 are usually performed simultaneously, in which case

the rewrite looks like R1*opt(S1)+R2*opt(S2)
84
−→opt(S1+S2)*(R1+R2). Rewrite rule 84 was

not presented in the text as it is less general than rewrite rule 80.

131

rewrite rule 76 and rewrite rule 83125 to convert the optional constraint back into a

normal constraint.

((X=1)+(X=2))*(A=sum(Y,((X=1)*(Y=1)+

(X=1)*(Y=3)+

(X=2)*(Y=5))))

Figure 9-8. The optional constraint has been li�ed to the top of the R-expr and
turned into a normal constraint.

From this point, we use the distributive rewrites on figure 9-8 to expand the

R-expr and handle each of these cases separately. For this example, we expand this

out using the distributive rewrite and have the case where (X=1) and (X=2) .

(X=1)*(A=sum(Y,((X=1)*(Y=1)+

(X=1)*(Y=3)+

(X=2)*(Y=5))))+

(X=2)*(A=sum(Y,((X=1)*(Y=1)+

(X=1)*(Y=3)+

(X=2)*(Y=5))))

→∗
(X=1)*(Y=4)+

(X=2)*(Y=5)

Figure 9-9. Aggregator evaluated and rewri�en.

Admi�edly, the use of the distributive rewrite in figure 9-9 goes against our phi-

losophy of using the distributive rewrite (rewrite rule 22) to split the R-expr into

(X=1) and (X=2) cases. As such, we can see that the “only factor” philosophy is

not su�icient in all cases. In section §11.7, I will continue to build on optional

constraints so that an R-expr can be split into a disjunction of finitely many smaller

R-exprs where each will be individually handled.

Solving the SAT formula To solve the SAT formula at the beginning of this

chapter (figure 9-2), the system will use the same li� nested boolean assignments

trick. The SAT formla containsR-exprs of the form(true=exists(true, (A=1)+(A=0))) .

125Note, the R-expr(X=1)+(X=2) is a constraint as its multiplicity is ≤ 1 in all cases. In general,
our implementation assumes that all disjunctions are not constraints, but when the R-expr is of a
special form (such as a list of ground assignments) as we have here, then we can detect that it is a
disjunctive constraint.

132

Using optional constraints, the constraint (A=1)+(A=0) can be li�ed to the top of the

R-expr, eventually resulting in (true=exists(true, (A=1)+(A=0)))*((A=1)+(A=0)) .

The (A=1)+(A=0) can be used to split the R-expr, and perform case analysis (propa-

gation of assignments and further branching).

9.2.2 Can Optional Constraints Solve all Disjunctive R-exprs?

No. Optional constraints must represent a valid upper bound on the support of an

R-expr. They accomplish this by li�ing up existing constraints through disjunctions

and aggregations. Unfortunately, sometimes even the tightest upper bound is

useless. For example, consider the program in figure 9-10.

398 a(X) += 1.

399 a(2) += 2.

400 a(3) += 3.

(a) Dyna

a(X,A) →
(A=sum(Y,

1*(Y=1)+

(X=2)*(Y=2)+

(X=3)*(Y=3)))

(b) R-expr

opt(1+

(X=2)+

(X=3))

(c) Optional constraint on X

Figure 9-10. The lack of a constraint on line 398 prevents us from creating a useful
optional constraint for the variable X.

Because of line 398, the upper bound on the support for values of X is any value.

The reason is that without a constraint on X, line 398 always matches. Therefore,

any optional constraint derived from a/1 will be always be true, represented as

opt(1).126 If we have an optional constraint that is always true combined with

any other optional constraint through a disjunction, then the resulting optional

constraint is also going to be always true. In this case, the rewrite sequence is

opt(1+· · ·)
76
−→if(1+· · ·, 1, 0)

63
−→1.

As such, the best we can do in the case of a query a(X)? against the program in

figure 9-10 would be to return the R-expr in figure 9-10 (b).

126Or we could derive opt((Y=1)) from the first line, but when pulling the constraint on Y

through the aggregator we would get opt(proj(Y,(Y=1)))
41
−→opt(1).

133

Chapter 10

Memoization, Reactivity,
Cycles, and Updates

This chapter covers how we implement memoization, updates, and cyclic programs

with R-exprs. For this chapter, I only assume the implementation described in

chapter §8. Therefore, I will defer some of the discussion around being e�icient till

section §11.6.2, and instead focus on the fundamental ideals of memoization as it

pertains to R-exprs and rewriting.

I should note ahead of time that memoization, updates, and cyclic programs

were previously studied by Nathaniel Filardo in work on the Dyna project. As such, I

recommend that anyone interested in the memoization topic in general should also

read Filardo’s dissertation [66]. In [66], Filardo developed theoretical algorithms

that allowed the values associated with ground terms to be updated in di�erent

ways using message passing given a known computation graph. Filardo’s work

focused on making recomputation e�icient and allowed for updates to be processed

at di�erent points in the algorithms running.127 In this chapter, I will instead

focus on the details necessary to introduce memoization into an R-expr-based

rewrite system. The system presented here uses a more complex representation

for memos in that we allow R-exprs to be memoized vs. Filardo’s algorithm, which

only supports ground values. Because we are memoizing R-exprs, we support

memos of non-ground terms and partially evaluated computation (represented

127By this, I mean that Filardo allowed for modifications to the memoized values to be intermixed
with when the message is sent about when change is about to happen or has already happened.

134

as an R-expr)—a capability that we have been unable to find elsewhere in the

memoization literature. Given that the focus here is on the implementation of

memos and R-exprs, the kinds of update messages that our system currently

supports are much more limited than what Filardo’s algorithm supported. We

will only use invalidation messages that cause our system to run a recomputation.

Hence, the approach for handling updates may be conceptually closer to a simple

implementation of reactive programming [14]. Future work may wish to investigate

how the di�erent message types supported by Filardo can be integrated into the

R-expr-based memoization presented here.

Chapter Outline The presentation in this chapter is ordered as follows. I will

start by reviewing the necessary background on memoization and its procedural

implementation. Then, I will transition to discussing the same abstract ideas of

memoization as they apply to R-exprs by focusing on “simple” Dyna programs

without external or internal updates.128 This means that the result of any com-

putation will not change, allowing us to temporarily ignore the issue of sending

invalidation messages (cache invalidation). Once we have developed the necessary

background on unchanging Dyna programs with memos, I will introduce the ad-

ditional mechanisms that are needed to handle external129 and internal updates

(section §10.4). Finally, once we have developed the necessary background on the

ideas underlying memoization and updates, I will present further clarifications

about how this is actually implemented with R-exprs (section §10.6), how updates

are handled (section §10.7) and how $memo(·)130 is implemented and used to control

memoization (section §10.8).

In this chapter, you will notice that the memoization approach presented here is

capable of memoizing any R-expr expression. However, the $memo(·) memoization

control mechanism defined in section §2.7 is only capable of defining memoization

policies for user-defined terms. The discrepancy between $memo(·) and this chapter

is not a mistake. The reason is that controlling the “full power” of memoization

128An internal update happens as a result of a cycle in the program. A cycle is where a value
depends on itself. This is a specific kind of recursion that requires that the system solve an equation
rather than just expand calls until a base case is reached. This was introduced previously in section
§2.5 and will be reintroduced in section §10.4.
129Dyna allows for additional rules to be added to be added via the REPL. This can cause memos

(cached computation) to become invalidated. Section §2.3
130Recall that $memo is a user-definable rule which allows for controlling what and how something

is memoized. Section §2.7

135

mechanisms presented in this chapter is di�icult and requires direct manipulations

ofR-exprs. Instead, our implementation of Dyna provides automatedmanipulations

of R-exprs that are limited to adding memoization to user-defined terms and are

controlled using $memo(·) (these “automated manipulations” will be discussed in

section §10.8). Future work may consider extending $memo(·) to expose more control

or may consider researching automatic control of the memoization mechanisms

presented here (section §16.4).

10.1 What is Memoization?

Let us review what memoization is before we jump into how it will work with

R-exprs. Memoization is a common concept that is taught to virtually all program-

mers. Hence, most readers will probably already have some preconceived notion of

what memoization is. In this section, we are going to distill memoization down to

a few simple conceptual elements. Then, we will look for those same elements in

our R-expr rewrite system.

Memoization is a technique to avoid redundant computation by storing in

memory a memo, which is the result of a computation, and retrieving it later to

avoid redoing the same computation. The technique of storing memos was in

fact called “Machine Learning” in the original memoization paper by Michie in

1968 [104]. To be able to store and later retrieve a memo, there needs to be a

“signature” of the computation.131 Ideally, the signature should be the same every

time that the same computation is performed—however, this is not a requirement,

in which case a memoized algorithm will redo work and be less e�icient but is still

“correct”. Finally, we need to modify the program to “intercept” relevant calls to the

computation with a check to see if an equivalent computation was previously done

and intercept the returned result of a computation so that it can be retrieved later.

131The signature should equivalence class the computation. Ideally, the signature will also allow
for e�icient look ups of memoized values (e.g. hash-table). This is not a strict requirement, as a
system could (in theory) perform a linear scan over all memoized signatures.

136

10.1.1 Example ofMemoization in a Procedural Programming
Language

I have chosen to start this discussion with an example in Python, a procedural

programming language. The reason for this is that it will allow us to discuss the

procedural steps required for memoization that we need to replicate with R-exprs.

To illustrate this, we start with the Fibonacci program in figure 10-1. The Fi-

bonacci program was chosen as it is an iconic example used when discussing

memoization. The Fibonacci sequence is defined as the sequence (computed by

the function in figure 10-1) where each number in the sequence is the sum of the

previous two numbers: 0,1,1,2,3,5,8,13,21,24,55, When the previous two

numbers in the sequence are available, the next number in the sequence can be

e�iciently computed in O(1) time. However, if the Fibonacci program is wri�en

such that every value is recomputed entirely from scratch each time it is used, then

the program will take Ω(2n/2) time132 to compute the n-th element in the sequence.

401 def fib(N):

402 if N == 0:

403 return 0

404 elif N == 1:

405 return 1

406 else:

407 return fib(N-1) + fib(N-2)

Figure 10-1. Fibonacci program wri�en in Python so that we can discuss the pro-
cedural processes of how memoization is implemented. On line 407, the Fibonacci
function calls itself twice. Hence, if we run Fibonacci as wri�en here, it will take
Ω(2n/2) time to compute the result.

To add memoization to the Python fib function (line 401), we first need to identify

the “signature”, which su�iciently identifies the computation to be performed. In

this case, we can use the argument for the fib function N. Note: The arguments to

132This is actually Θ(φ n) where φ is the golden ratio.

137

the function are su�icient in the case that the function is a pure function133, as here,

meaning that the result of the function is entirely determined by its arguments.

In general, Python does not require that functions are pure, so the arguments

might not be a su�icient signature, and it is a Python programmer’s responsibility

to ensure that a memoized function is pure.134 Dyna automatically tracks the

necessary dependencies and changes for a memo without having to concern the

Dyna developer further.

Now that we have identified the signature of the Fibonacci function as its

argument, we need to create some “global” storage associated with the function

where the results of the computation will be stored.

Finally, we need to check upon being called if the requested computation was

previously performed and retrieve it from storage. Or, if the computation was not

previously performed, do the computation and save it to storage for later use.

Adding this to the Python program from figure 10-1, we get the program shown

in figure 10-2.

133The term pure function is a programming language term which would generally just be called a
function in a mathematical se�ing. The returned result from a pure function is entirely determined
by its arguments, which means that it returns the same value every time it is invoked and that the
function is side-e�ect-free. Meaning that there is no other external observable behavior, such as
modifying a global or class variable.
134 An example of an impure function would be something that modifies global state. This

can either be explicit, by mutating some global state, or implicitly by depending on the result of
something like a random number generator (which maintains global state internally). E.g.
x = 0

def not_pure():

....global x

....x += 1

....return x

138

408 def fib_original(N):

409 if N == 0:

410 return 0

411 elif N == 1:

412 return 1

413 else:

414 return fib(N-1) + fib(N-2)

415

416 memoized_values = {}

417 def fib(N_signature): # override fib, so it is now memoized

418 if N_signature in memoized_values:

419 return memoized_values[N_signature]

420 r = fib_original(N_signature)

421 memoized_values[N_signature] = r

422 return r

Figure 10-2. The Fibonacci program in Python with memoization manually added
by the programmer. On line 416, a global hash map is created that is used to
hold the memoized values. The hash map is checked at the top of the memoized
fib function on line 418 before the original fib_original is called (performing
computation). In the original fib_original function, the memoized version of the
function is called on line 414 as we have overridden the fib function. A�er the
original fib_original function performs the computation, the result is saved by
the memoizing version of fib on line 421.135

10.1.2 The Facets of Memoization

Taking a step back from the Fibonacci example, we can see that there are four

things that we need to identify when designing memoization for R-exprs:

1. A location (in memory) for a data structure to store a memo (short for mem-

oized result of computation). This can either be a data structure that exists

globally for the entire running of the program (as in figure 10-2), or a data

135Here, I have shown the explicit transformation of how memoization is added to a Python
function. Python does provide a decorator that can perform this transformation automatically,
using only one additional line of code. https://docs.python.org/3/library/functools.html#
functools.cache

139

https://docs.python.org/3/library/functools.html#functools.cache
https://docs.python.org/3/library/functools.html#functools.cache

structure that only exists within the context of a single computation (e.g.

within the context of a single query handled by SimplifyNormalize).

2. A signature to identify the computation requested. The signature must be

su�icient to identify the computation, otherwise the memowill be incorrect.134

The signature should occur many times, otherwise there will be no advantage

when memoizing the computation under an ine�ective signature. Usually,

the signature is the arguments to a function; however, a backed o� version

of the arguments could also be used. For example, if we have the arguments

x =−3, then we could choose to memoize for the negative interval x < 0, as a

backed-o� version (section §10.2.3).

3. A way to intercept the calls to function and identify the signature of what

computation is requested. This is done to check the data structure that contains

the stored results before a�empting to perform further computation.

4. A way to store the result of a computation so that it can be reused later.

Generally, in a language like Python, the result is the value returned from a

function (as on line 421); however, as we will see, this can be generalized with

R-exprs.

5. A way to control what is memoized. In the case of Python, this is how the

programmer hasmodified their program to enable memoization (as in figure 10-

2). In Dyna, the “program” itself does not require any changes. Instead, we

will control memoization using $memo.

By the end of this chapter, we will be able to identify these same elements (and

more) in R-exprs-based memoization.

10.2 First Steps Towards R-expr Memoization

Given the requirements of memoization in section §10.1.2, let us identify where

these requirements exist in the context of R-exprs. To keep things “simple” in this

section, I will only focus on creating simple memos, and I will defer modifications,

cyclic programs, internal & external updates, and change propagation until section

§10.4.

140

423 m(X) = 2*X + 3.

(a) Simple Dyna rule.

m(X,Res) → ▷user-def’ with memo

if((X=1)+(X=2), ▷Disjunction of signatures

((X=1)*(Res=5)+ ▷The memos136

(X=2)*(Res=7)),

(Res=only(Inp, ▷Original user-de�ned R-expr
proj(Tmp,

times(2,X,Tmp)*plus(Tmp,3,Inp)))))

(b) R-expr with a memo for 1 and 2

Figure 10-3. Simple R-expr with the memoized values for 1 and 2 stored inside
of the R-expr. X is the argument and Res is the returned result of the user-defined
R-expr.

Now, the goal of memoization is to avoid redoing computation. Computation,

in the R-expr se�ing, are rewrites performed by Simplify(R, C) against an R-expr, to

get another semantically equivalent R-expr.

As such, a first a�empt would be to apply memoization to the Simplify(R, C)

function. Unfortunately, memoizing Simplify does not work that well. The reason

is that the arguments for Simplify are both a large R-expr R and the entire context

C, which contains many irrelevant details. Therefore, a signature match against R

and C would be ine�icient and ine�ective. Furthermore (and more importantly),

memoizing Simplify does not work with handling internal or external updates, as

will be discussed in section §10.5.3.1.

Rather, we are going to create memos for sub-R-exprs using an approach based

on the previously introduced if-expression kind R-expr (section §5.2.2.8). Recall

that given any R-expr R, for which we want to create memos for, the system can

use rewrite rule 66 to introduce an if-expression as R
66
−→if(S,R,R) (as the same

R-expr R is returned regardless of the S that the system picks). As we will see, S is

the signature of the memo. I will get into details of how S is selected later, but for

now, we will just assume that S is selected to be “useful for memoization”.

Once we have this R-expr, the system can use rewrite rule 67 to rewrite the

136The structure of Memo here is shown as a generic R-expr. In practice, we might want to ensure
that the R-expr is represented as a hash-map so that it is e�icient. E�icient disjunctive R-expr kinds
will be discussed in section §11.6.1.

141

true branch as if(S,R,R)
67
−→ if(S,S*R,R) provided that S is a constraint. We can

perform S*R→∗ S*RMemo using Simplify.137

The R-expr now has a structure like if(S,S*Memo,R). A more complete example

of if(S,S*Memo,R) R-expr is shown in figure 10-3. Let us look at this R-expr and

check which facets of memoization are satisfied.

First, memoization requires that there is some location in memory where the

result of a computation is stored. Here, RMemo is the result of Simplify applied to R in

the context of S. Additionally, RMemo is stored inside of the R-expr if(S,S*RMemo,R).

Second, there needs to be a signature of the computation. The signature needs

to be checked and return the memo in the case it matches, or bypass the memo and

perform computation in the case the memo does not exist. Here, S is the signature

of the computation. To see that S is indeed the memo’s signature, let us consider

the third requirement of memoization, that we can intercept “calls” to compute and

instead return thememoized result. Theway inwhichwe perform computationwith

R-exprs is by rewriting an R-expr with Simplify in the context of other conjunctive

R-exprs tracked via the context C. For example, suppose that we have the R-expr

R, which is being rewri�en in the context of Q. Hence, the system is rewriting the

R-expr Q*R.138 Now, let us consider a version R with a memo. The R-expr R with

a memo has the form if(S,S*RMemo,R) (where the if-expression was introduced

using rewrite rules 66 and 67). Now, when rewriting if(S,S*RMemo,R) in the context

of Q, the system is rewriting the R-expr Q*if(S,S*RMemo,R). Using rewrite rule 65,

the if-expression’s conditional is allowed to “read” the context Q, resulting in the

R-expr Q*if(Q*S,S*RMemo,R). If the signature S matches the context, then there will

exist a sequence of rewrites such that Q*S→∗ Q*(1+T) for some T.139 This means that

the true-branch of Q*if(Q*S,S*RMemo,R) will be returned (Q*if(Q*(1+T),S*RMemo,R)
65,63
−−−→ Q*S*RMemo). Hence, we have intercepted the “call” to R and substituted in the

memo. Retrieving the memo was previously called lookup in Filardo’s work [66, 67].

Similarly, if Q is not memoized, then Q*S→∗ 0, causing the false-branch of the

137The RMemo R-expr in this case might be be�er thought of as a “bulk” computed memo rather
than an individual memo. This, of course, depends on the computation specified by S.
138Simplify R in the context of Q is equivalent to making the Simplify call Simplify(R, C = {Q}).
139In Simplify the system does not explicitly copy Q into the conditional. Instead, it depends on

Q by including it in the context. Hence, the system will instead check that Simplify(S, C = {Q})
returns an R-expr that matches 1+T for some T.

142

if-expression to be returned: Q*if(Q*0,S*RMemo,R)
64
−→Q*R. This corresponds with

falling back to the original computation (known as compute in Filardo’s work [66,

67]).

This way in which this R-expr-based if-expression works can be seen as concep-

tually the same as the if-expression in the Python program (line 418).140 When the

signature in the Python program matches, the true branch, which reads from the

hash-table, is used. If the signature fails to match, then the false branch is used,

which falls back to the original definition. However, by representing the signature

S and the query Q as R-exprs, we can memoize non-ground relations and condition

memos on general expressions rather than ground terms used as keys for a memo

table.

10.2.1 Advantages of Homogeneity

The advantage of a homogeneous system which represents all state as R-exprs

shows through in our representation of memos.

For example, in the procedural Fibonacci example (section §10.1.1), the signature

of a memo was the argument to the function—which is an integer value like

the number 7. Using a value like this is quite typical of memoization. However,

with our R-expr if-expression representation, we can further generalize memos

to use any executable R-expr as the signature. For example, we can choose to

memoize all negative values by using lessthan(X,0) as a signature. Admi�edly, a

programmer couldmanually introduce the relevant test and if-expression in another

programming language. However, the R-expr backed formalism allows us to do

this automatically.

A second advantage of homogeneity is that the result returned from the memo

is an R-expr. This means that we are not limited to memoizing values, but instead,

we can memoize partially completed computation. For example, suppose that we

have the sum3 rule defined in figure 10-4 that sums up its three arguments.

140 Additionally, note that accessing the memo contained in the if-expression required no modifi-
cations to Simplify. In this way, Simplify is comparable to a bytecode interpreter, and the addition
of the if-expression to the R-expr can be considered a modification to the program, just like how
we modified the Python program (not the Python interpreter).

143

424 sum3(A,B,C) = A+B+C.

(a) Sum3 in Dyna

proj(Tmp, plus(A,B,Tmp)*plus(Tmp,C,Result))

(b) Body of Sum3 as an R-expr

Figure 10-4. Rule defining sum of its 3 arguments.

In memoizing sum3 with only 2 of its three arguments (say A and B), we will still

have one plus R-expr remaining. The memo can memoize the intermediate sum of

A+B but must still represent the remaining plus as shown in figure 10-5.

if((A=1)*(B=2), (A=1)*(B=2)*plus(3, C, Result),

proj(Tmp, plus(A,B,Tmp)*plus(Tmp,C,Result)))

Figure 10-5. sum3 with a memo created where only two of its arguments (A,B)
are known. Computation to compute 1+2 = 3 was performed, leaving an R-expr
which represents the computation 3+C that still needs to be completed. Admi�edly,
in this example, we are not saving that much “work” by memoizing 1+2, however,
in general, we would memoize a computation that takes more time to complete.

10.2.2 Persisting Memos to Make them Globally Usable

In our design, so far, a partial memo is represented as another R-expr, namely

R
66,67
−−−→if(S,S*R,R). This is a very general approach to creating and storing a memo,

as there always exists some R-expr, and therefore the system can create a memo

whenever it wants. However, “whenever it wants” is a double-edged sword, in that

some points where a memo could be created may be useless. For example, suppose

that a memo is created inside of an R-expr that was created to evaluate a user’s

query (section §2.3). In this case, the memo is usable only within the context of

that query. The R-expr with the memo does not persist within the Dyna system

a�er the query has been completed.

Ideally, a memo should be usable throughout the entire running of the program—

meaning that it should persist between queries initiated by the user. This can be

accomplished by carefully choosing when and where a memo is constructed. Recall

from chapter §7 that the user’s program is defined in terms of user-defined named

R-exprs, recreated in figure 10-6 for convenience.

144

425 f(X) += X*X.

(a) Dyna

f(X,Res)
74
−→ (Res=sum(Inp,

times(X,X,Inp)))

(b) R-expr

Figure 10-6. Recall how Dyna is translated to R-exprs, chapter §7.

Every time that a user-defined R-expr is referenced, it indirects through rewrite

rule 74. This means that if we modify rewrite rule 74, then the resulting R-expr will

be accessible globally. The resulting R-exprs will look something like figure 10-7.

f_original(X,Res) → (Res=sum(Inp, ▷Original R-expr (like fib_original
times(X,X,Inp))) in �gure 10-2)

f(X, Res)
74
−→ if((X=3), ▷Disjunction of all signatures

(X=3)*(Res=9), ▷Memo

f_original(X,Res)) ▷Call to original de�nition

Figure 10-7. The user-define f R-expr with a memo for the value of 3.

10.2.3 Things to Consider When Choosing a Signature for
Memoization

So far, we have that the memo is contained inside of the R-expr that user-defined

R-exprs are rewri�en as. However, we need to discuss how the system determines

what to memoize. More concretely, we need to pick the signature S used by rewrite

rule 66 when introducing an if-expression (R
66,67
−−−→if(S,S*R,R)). The common

approach we saw with the Python example in section §10.1.1 is to wait until the

function is called with an unmemoized query and then use the value that was

used to check the memo table as the signature (as in figure 10-2 lines 418, 420

and 421). However, the Python program hard coded that the signature was the

argument of the Fibonacci function. Whereas with R-exprs, we have more flexibility

in choosing the signature as we are allowed to choose any R-expr, and we do not

have to commit to a particular S until just before the memo is created by rewrite

rule 66. Further complicating this, the choice of S will have a significant impact on

145

the usefulness and e�iciency of our memo.

As an example of choosing a signature, suppose that we are performing a query

Q against the R-expr R. If the system chooses S as having no relation to Q, then

it is likely that S and Q will be incompatible (e.g. Q*S→∗ 0). This means that

spending time constructing amemo using a bad signature Swould actually delay the

computation with useless rewrites: Q*R→Q*if(S,S*R,R)→ Q*if(S,S*RMemo,R)→Q*R.

This gives us our first hint of how to pick a signature. A useful signature must

have a non-empty intersection with the query Q.

A second thing to consider when choosing a signature is the amount of reuse we

will get from amemo. A signature that ismore general can be used inmore cases. For

example, suppose that we are making the query lessthan(5,W)*(X=1)*(Y=2)*(Z=3)

against the R-expr R. We can choose to use the signature (X=1)*(Z=3) , ignoring

lessthan(5,W)*(Y=2). This will mean that we get an R-expr with a memo like

if((X=1)*(Z=3),(X=1)*(Z=3)*RMemo,R). Now, if we get a second query(X=1)*(Z=3)*

(Y=7) against this R-expr, we can reuse RMemo as the signature(X=1)*(Z=3) matches

this query.

A third consideration when choosing the signature S is the data structure that

will be used to store the memo. For example, ground assignments to variables

(e.g. (X=1)*R1+(X=7)*R2), can be represented e�iciently using a hash table (sec-

tion §11.6.1.2). Whereas a signature like int(X)*lessthan(0,X)*lessthan(X,10)

+int(X)*between(X,15,18)+ · · · +int(X)*lessthan(321,X)*lessthan(X,325) requires

that the system scan through all of the lessthan constraints to check if any of them

match the current query.

Finally, I note that when selecting the signature S, the system has access to

the context C for the current query. This means that the system can e�iciently

retrieve conjunctive R-exprs when accessing the memo. Hence, the signature S will

be chosen as a relevant subset of C that satisfies the considerations listed above.

10.3 Example: Memoization of an R-expr

Let us use the representation in memoization discussed so far to work through an

example on the Fibonacci program, this time represented as a Dyna program and

an R-expr in figure 10-8. Note that the R-expr here is semantically equivalent to

146

the Dyna program, though not identical to the R-expr that would result from the

mechanical translation of Dyna to R-exprs (as defined in chapter §7).

426 fib(0) += 0.

427 fib(1) += 1.

428 fib(N) += fib(N-1)

429 for N > 1.

430 fib(N) += fib(N-2)

431 for N > 1.

(a) Dyna

fib(N, Res) → (Res=sum(Inp,

(N=0)*(Inp=0)+

(N=1)*(Inp=1)+

proj(Tmp, lessthan(1,N)*plus(Tmp,1,N)*

fib(Tmp,Inp))+

proj(Tmp, lessthan(1,N)*plus(Tmp,2,N)*

fib(Tmp,Inp))))

(b) R-expr

Figure 10-8. Fibonacci program shown as a Dyna program and R-expr.

First, suppose that a query is initiated against the fib R-expr. For example, this

might be fib(5,Res) where the system is computing the Fibonacci value for the

number 5. The Fibonacci R-expr will be simplified by expanding the user-defined

sub-R-expr until it reaches the base cases of (N=0) and (N=1) . At this point, the

system can identify (N=0) and (N=1) as two queries made against the Fibonacci

relation. Both are combined into a signature to indicate that the system will

memoize the values for both (N=0) and (N=1) . The resulting R-expr is shown in

figure 10-9:

fib(N, Res) → if((N=0)+(N=1),

((N=0)*(Res=0)+ ▷The memo

(N=1)*(Res=1)),

(Res=sum(Inp, ▷The original R-expr
(N=0)*(Inp=0)+

(N=1)*(Inp=1)+

proj(Tmp, lessthan(1,N)*plus(Tmp,1,N)*

fib(Tmp,Inp))+

proj(Tmp, lessthan(1,N)*plus(Tmp,2,N)*

fib(Tmp,Inp)))))

Figure 10-9. Fib R-expr with memo for 0 and 1

Next, the value for fib(2,Res) can be computed and stored. The current disjunc-

147

tion of the signatures (N=0)+(N=1) indicates that the (N=2) value is not currently

memoized,141 and therefore will fall back to the original R-expr. A new memoiz-

ing if-expression is nested under the false-branch of the original memo. This is

consistent with the idea that we are creating memos on any R-expr, rather than

modifying the existing memo. The resulting R-expr is shown in figure 10-10.

fib(N, Res) → if((N=0)+(N=1),

((N=0)*(Res=0)+ ▷The previous memos

(N=1)*(Res=1)),

if((N=2), ▷The new memo nested under the false-branch of the �rst memo

(N=2)*(Res=1),

(Res=sum(Inp, ▷The original R-expr deeply nested under the false-branches of all

memos

(N=0)*(Inp=0)+

(N=1)*(Inp=1)+

proj(Tmp, lessthan(1,N)*plus(Tmp,1,N)*

fib(Tmp,Inp))+

proj(Tmp, lessthan(1,N)*plus(Tmp,2,N)*

fib(Tmp,Inp))))))

Figure 10-10. Fib R-expr with a new memo for (N=2) , which was introduced using
rewrite rules 66 and 67. The newly added memo is under a second if-expression,
and does not modify the previously created memo for (N=0)+(N=1) .

Observe that falling through several if-expressions will be ine�icient when there

are a large number of memoized R-exprs and R-expr signatures. Therefore, the

system can use rewrite rule 69 to merge the if-expressions together, which avoids

creating a nested chain of if-expressions:

141We can check the signature by performing the rewrite sequence for
((N=0)+(N=1))*(N=2)→∗0.

148

fib(N, Res) → if((N=0)+(N=1)+(N=2),

((N=0)*(Res=0)+ ▷The memos (now combined)

(N=1)*(Res=1)+

(N=2)*(Res=2)),

(Res=sum(Inp, ▷The original R-expr
(N=0)*(Inp=0)+

(N=1)*(Inp=1)+

proj(Tmp, lessthan(1,N)*plus(Tmp,1,N)*

fib(Tmp,Inp))+

proj(Tmp, lessthan(1,N)*plus(Tmp,2,N)*

fib(Tmp,Inp)))))

Figure 10-11. Fibonacci with if-expressions merged using rewrite rule 69

This process of creating nested if-expression for new memos and merging the

if-expressions will continue all of the way up to fib(5,Res), which was initially

requested by the user’s query. Once the query fib(5,Res) has been answered,

the user-defined Fibonacci R-expr fib(N,Res) will only contain the memos for

0,1,2,3,4,5, and the system will stop modifying the definition fib(N,Res).

Throughout this entire process, the rewrite that defines the user-defined fib(N,Res)

was having its right-hand side modified. However, the semantic interpretation of

fib(N,Res) never changed. This is because all of the rewrites performed against

fib’s definition are semantics preserving. The only di�erence is that we are now

clever about where and when we apply the rewrite rules from chapter §6.

10.3.1 Conclusion of Basic Memos

So far, we have developed a su�icient understanding to implement memoization

in the case of unchanging programs. The if-expression can represent the memos

inside of R-exprs. If we think of the R-expr itself as representing the program, then

modifications of the R-expr with the if-expression are conceptually equivalent to

the modifications done to the Python program when adding memoization to the Fi-

bonacci function (figure 10-2).140 With R-exprs, the true-branch of the if-expression

represents the memo itself, the signature is used to indicate what is memoized, and

the false-branch is used to represent falling back perform a computation using the

original definition of a user-defined R-expr.

149

432 e += 1.

433 e += e/2.

434 print e. % prints 2

(a) A cyclic Dyna program
which converge to e=2.

435 a += 1.

436 print a. % prints 1 (query)

437 a += 2. % external update

438 print a. % prints 3

(b) Dyna program with an update (line 437)
which modifies the program.

Figure 10-12. Example Dyna Programs which demonstrate rules (e and a) can
change. Therefore, any downstreammemoized values must be updated accordingly.

10.4 Handling Change

So far, we have focused only on programs where the result does not change, ignoring

issues such as updates (cache invalidation). However, Dyna allows the rules to

change. This can be the result of externally driven updates (such as new rules added

at the REPL), or due to cycles in the program iterating until a fixed point (section

§2.5, e.g. figure 10-12a). To properly handle this, we must track any memo that

depends on a value that has changed and needs to be updated or invalidated. We

accomplish this by adapting a design similar to that of other reactive programming

languages and libraries [14].

10.4.1 Assuming Reads Never Change

First, we have that all values and expressions in the language which can change are

protected by an assumption142 that the values have not changed. Some examples

of changeable values include all the R-expr definitions of user-defined terms and

the mutable memo tables (which I will define shortly).

An assumption (figure 10-13) is an object within the Dyna implementation

that tracks the immediate downstream dependencies of a particular value. When a

value is changed, its associated assumption is invalidated and will be replaced with

a new assumption for the new value. An invalidated assumption sends notification

messages to all downstream dependencies that it has been invalidated. An invalid

assumption can never become valid again. This design was made with the intention

142We have adopted the terminology of assumption from the JIT compiler literature [149].

150

439 final class Assumption {

440 private boolean isValid = true; // Starts valid

441 private Set<MessageListener> subscribers;

442 public void subscribe(MessageListener); // Dependents are subscribed

443 public void sendMessageToAll(Message); // Send to all subscribers

444 public boolean getIsValid() { return isValid; }

445 public void invalidate() { isValid = false; // Can only invalidate

446 sendMessageToAll(· · ·); }

447 }

Figure 10-13. Class design for an Assumption

that future work on parallel/concurrent processing can take advantage of this

design to avoid race conditions.

When computation is performed in the Dyna implementation, assumptions that

protect read values will be automatically subscribed to.143 Downstream depen-

dencies are allowed to run “any code they want” when they receive a notification

that an upstream assumption has become invalidated. This allows us to integrate

assumptions and invalidation messages into many di�erent aspects of Dyna im-

plementation outside of memoization. Currently, assumptions are only used to

trigger recomputation of memos, however future work may which to depend on

this mechanism.144

Note: Memoized values can be subscribed to their own assumption. This happens

in the case of a cyclic program as in figure 10-12a. This is not a problem as long as

the memoized R-expr eventually converges.145

143Note: In a (future) parallel processing environment, it is possible that an invalid assumption
to be “depended” on. This means that the computation that depends on an invalid assumption
is already “stale” when it is computed. Most likely, it should be immediately thrown out and
recomputed, as there is li�le use for a stale value.
144Futurework has considered streaming queries, which are queriesmade against theDyna program

that are updated as the program changes rather than ge�ing back a single value. Streaming queries
can be implemented by subscribing to assumptions with a custom subscriber class that listens to
invalidation messages.
145If the memoized R-expr does not converge, e.g. a = !a., then the memo not converging and

running forever is consistent with the semantics of Dyna, section §2.5.

151

10.4.1.1 Updating Memoized R-exprs

The most common message that a subscriber will receive is a notification that

an upstream R-expr has changed and its corresponding assumption has been

invalidated.146 In this case, thismeans that there is anR-expr like if(S,RMemoExisting,

R) and the system needs to recompute RMemoExisting. This is done by starting again

from the original R-expr definition R, and combining it with the memo’s existing

signature S to get R*S. The system rewrites R*S using SimplifyNormalize, as we

did before, and will get S*R→∗ RMemoNew. In the process of creating RMemoNew, all

reads performed, and assumptions depended on will be tracked. Finally, RMemoNew

and RMemoExisting are compared with each other for “semantic equivalence”.147 If

the system can prove that RMemoNew and RMemoExisting are semantically equiva-

lent, then we do not have to invalidate the assumption associated with the memo

RMemoExisting and can stop propagating update messages forward. In the case

that the system cannot prove that RMemoNew and RMemoExisting are semantically

equivalent, it must replace RMemoExisting with RMemoNew, and then invalidate the

assumption associated with RMemoExisting.

This process of receiving messages about upstream assumptions being invali-

dation and recomputing RMemo will continue until the system converges148 and all

messages have been processed.

10.4.2 Example: Updating a Dyna Program

To see how assumptions work in the context of a program receiving updates, let us

work through the example given in figure 10-12b.

146This can either be an R-expr, which was user-defined and changed via an external update, or a
change resulting from a memo being recomputed.
147Proving two R-exprs are semantically equivalent is Turing-complete, hence can be di�icult to

check. We allow for one-sided error in that the system must prove that two R-exprs are equivalent
when it returns that two R-exprs are equivalent. However, it is not required to prove that R-exprs
are not equivalent. Hence, it may overestimate that two R-exprs are not equivalent. We handled
this by having a procedure that a�empts to determine semantic equivalence in the case of minor
reordering of the R-expr and renaming of variables. Section §12.4.2 also discusses checking R-exprs
for semantic equivalence in the context of compilation.
148It is up to the user to write Dyna programs that converge. The Dyna system does not provide

any automatic detection (or restrictions) that ensures that the programs converge (section §2.5).

152

First, we have the initial R-expr for ‘a’, and the system will have created a memo

using the if-expression around the original R-expr. Furthermore, I have shown the

valid assumptions as black boxes and the subscription from the assumptions as a

blue dashed arrow in figure 10-14.

448 a += 1.

(a) Dyna

a(Val) → if(1,

(Val=1), ▷Memo

a_original(Val)) ▷Call Original

a_original(Val) → ▷User-def
(Val=sum(Inp, (Inp=1)))

(b) R-expr with Memo

’a’ User-Def

’a’ Memo

(c) Assumptions
(figure 10-13)

subscription

Figure 10-14. A memo created for the Dyna rule a. Assumptions are shown as
boxes on the right-hand side, and the subscription to the “definition of ’a’” is
shown as a blue dashed line. In this example, the signature is always the R-expr 1,
meaning that the entire relation is memoized.

When the definition of ‘a’ is updated, the original R-expr is modified, and the

assumption that is associated with the definition of ‘a’ is invalidated. This is shown

in figure 10-15.

449 a += 1.

450 a += 2.

(a) Dyna

a(Val) → if(1,

(Val=1), ▷Memo

a_original(Val)) ▷Call Original

a_original(Val) →
(Val=sum(Inp, (Inp=1)+

(Inp=2))) ▷Added rule

(b) R-expr with Memo

’a’ User-Def

’a’ Memo

’a’ User-Def #2

(c) Assumptions
(figure 10-13)

subscription (now invalid)

Figure 10-15. The original R-expr (Dyna program) has been modified. The as-
sumption that is associated with the user’s definition has been invalidated, and
the subscription to the memo needs to be processed.

This will trigger the memo to be recomputed and brought up to date with the new

153

value as defined by the R-expr constructed from the user’s program as shown in

figure 10-16.

451 a += 1.

452 a += 2.

(a) Dyna

a(Val) → if(1,

(Val=3),

a_original(Val))

a_original(Val) →
(Val=sum(Inp, (Inp=1)+

(Inp=2)))

(b) R-expr with Memo

’a’ User-Def

’a’Memo

’a’ User-Def #2

’a’ Memo #2

(c) Assumptions
(figure 10-13)

subscription

Figure 10-16. The memoized value has been updated to Val=3 by recomputing us-
ing the original R-expr. The Memo now depends on the new valid assumption “’a’
User-Def #2”. The old assumption for the memo has been invalidated and replaced
with a new assumption. Anything that was subscribed to the old assumption will
have received a notification of its invalidation.

10.5 Handling Cyclic Programs

So far, in section §10.4, I have glossed over the details of how the computation

for creating a memo is performed. In general, SimplifyNormalize (algorithm 1) is

invoked on the original user-defined R-expr in conjunction with a query, and the

resulting R-expr is saved as the memo. With a non-cyclic program, we are guaran-

teed that the fully expanded R-expr is bounded in size. Hence, SimplifyNormalize

is able to fully rewrite the R-expr.

Unfortunately, the same guarantee does not exist with cyclic programs. A cyclic

program recurses back onto itself. For example, the definition of ‘e’ in figure 10-17

is cyclic as the term ‘e()’ depends on the term ‘e()’. Conversely, the Fibonacci

program from before is recursive, not cyclic, as terms in the computation graph

do not depend on themselves, rather terms with the name fib(·) depend on other

terms which also have the name fib(·).

When rewriting a cyclic R-expr, SimplifyNormalize will never terminate. The

reason is that the R-expr is expanded at every invocation of Simplify to increasing

depths of the recursion.

154

453 e += 1.

454 e += e/2.

(a) Dyna

e(Val) → (Val=sum(Inp,

(Inp=1)+

proj(Tmp, e(Tmp)*times(Tmp, Inp, 2))))

(b) R-expr without Memos

Figure 10-17. The equation e = 1+ e
2
is represented as an R-expr on lines 453

and 454. The rule ‘e’ depends on what is in both line 454, and in the R-expr, with
e(Val) appearing on both the le� and right-hand side of the rewrite rule.

10.5.1 Making Guesses

To avoid this issue, we must avoid expanding the same recursive call when an

R-expr is rewri�en as depending on itself as a sub-R-expr, as in figure 10-17 with

e(Val). This is accomplished by placing a “marker” along the recursive calls to

avoid performing the same query against a memo twice. This is akin to se�ing and

checking a visited bit in a depth-first search algorithm.

Like in the depth-first search, when the query is re-encountered, the system

avoids redoing the exact same computation by guessing the R-expr result to a query.

A guess is a memo that is created before any computation is performed. A guess

can be any R-expr, though in practice, we always guess an empty bag, hence the

R-expr 0. A guess initially depends on an invalid assumption; therefore, it must be

recomputed/checked immediately a�er it is created. Checking a guess is crucial

as it enforces the self-consistency of a value on a cycle. Furthermore, the process

of guessing and then forward-chaining invalidation messages until convergence

is equivalent to Datalog-style forward chaining, though with R-exprs rather than

ground values (section §3.1.2).

I should note that guessing in the case of cycles is not novel to this dissertation

and has appeared in prior work that influenced our design. First, XSB-Prolog [135,

145, 151] added memoization to standard Prolog style back-chaining by detection

with marking. When a cycle is found, a guess is made. Filardo and Eisner [67]

focused their work on finite circuits, which can contain cycles and allow guessing

and forward-chaining messages to update memoized values (also see Filardo’s

dissertation [66]).

155

10.5.1.1 Example: Using Guessing with a Cyclic Program

To see how guessing works, let us work through an example of ‘e’ defined in

figure 10-17. In figure 10-18, I have wri�en the R-expr with an initial guess. The

initial guess for ‘e’ is 0, and the memo is subscribed to the invalid assumption. We

also already have the guess protected by its own assumption “e Memo”.

e(Val) → if(1,

0, ▷Empty Memo (Guess)

(Val=sum(Inp, ▷Original R-expr
(Inp=1)+

proj(Tmp,e(Tmp)*times(Tmp,Inp,2)))))

(a) R-expr

Invalid

’e’ Memo

’e’ User-def

(b) Assumptions
(figure 10-13)

subscription

Figure 10-18. Initial memo being created as guess of 0. The guess is subscribed to
an invalid assumption, so the memo must be validated by recomputing the memo.

In the process of recomputing the memo for ‘e’ now, the recursive call to e(Tmp) is

rewri�en as 0 (as that is the memo). This means that only the contribution from

the (Inp=1) (line 453) branch will be counted. Hence, the new memoized value is

(Val=1) , as shown in figure 10-19.

e(Val) → if(1,

(Val=1), ▷Memo

(Val=sum(Inp, ▷Original R-expr
(Inp=1)+

proj(Tmp,e(Tmp)*times(Tmp,Inp,2)))))

(a) R-expr

Invalid

’e’Memo

’e’Memo #2

’e’ User-def

(b) Assumptions
(figure 10-13)

subscriptions

Figure 10-19. The memo for the cyclic ‘e’ a�er one iteration of recomputation.
The memo(Val=1) depends on the old memoized R-expr of 0. However, that R-expr
was replaced, and its associated memo (“’e’ Memo”) has been invalidated. Hence,
the system is required to again recompute the memo for ‘e’.

Unfortunately, the new memo in figure 10-19 depended on the old memo of 0,

156

which has since been invalidated. Hence, the system must again recompute the

memo, as in figure 10-20.

e(Val) → if(1,

(Val=1.5), ▷Memo

(Val=sum(Inp, ▷Original R-expr
(Inp=1)+

proj(Tmp,e(Tmp)*times(Tmp,Inp,2)))))

(a) R-expr

’e’Memo

’e’Memo #2

’e’Memo #3

’e’ User-def

(b) Assumptions
(figure 10-13)

subscriptions

Figure 10-20. The memo for the cyclic ‘e’ a�er two iterations of recomputation.
The memo is now (Val=1.5) , as the previous memoized value was 1, and by the
definition of line 454 we have defined this as 1+ e/2. Just like before, we have
that the memo of (Val=1.5) depends on the assumption of the previous read (“’e’
Memo #2”) which has been invalidated as the memoized R-expr was replaced. This
process of recomputing the memo will continue until the memo is consistent with
itself as in figure 10-21.

e(Val) → if(1,

(Val=2.0), ▷Memo

(Val=sum(Inp,

(Inp=1)+

proj(Tmp,e(Tmp)*times(Tmp,Inp,2)))))

(a) R-expr

’e’Memo #3

’e’Memo #4
...

’e’ Memo #n

’e’ User-def

(b) Assumptions
(figure 10-13)

subscriptions

Figure 10-21. The memo has converged149with (Val=2.0) . When the system
rechecks this memo, it constructs the same R-expr, which can be checked for
semantic equality. Hence, the memo is not changed, and the assumption “’e’
Memo #n” is subscribed to by the same R-expr it protects. The assumption remains
valid, so no further propagation is required.

157

10.5.2 Choice of default Guesses

As stated earlier, we are allowed to use any R-expr as our guess. The choice of initial

guess can have a significant impact on the value to which the program converges

and the speed at which the program converges. For example, we could have chosen

to “guess” the R-expr (Val=2.0)150 for the ‘e’ definition in section §10.5.1.1. In

which case the system would have been able to immediately validate that the guess

(Val=2.0) is correct and avoid the iterative process of converging to the value of

(Val=2.0) .

That said, we have made the decision to make the initial guess always the empty

R-expr 0. This choice was made in hopes of minimizing the amount of surprise that

results from guessed values. As such, a user-defined term like ‘g’ in figure 10-24

would have “no value”.

10.5.2.1 User Override for Initial Guesses

The choice of the initial guess being empty can be “overridden” by the user of Dyna

if they are willing to introduce a small modification into their program. Using the

:= aggregator, we can set an initial value for when nothing exists. An example of

this is shown in figure 10-22.

149This program will converge in the sequence 1,1.5,1.75,1.875, . . .2.0. In theory, this is an
infinitely long series converging to 2.0, so one might think that this never stops/converges. In our
case, however, we are using standard IEEE floating point numbers, which have limited numerical
precision. Therefore, this sequence converges when run with floating point when it runs out of
numerical precision and is rounded to 2.0.
150This could have been computed using the closed form formula for a geometric series: 1

1−r
where

r = 1
2
in this case.

158

455 g_with_guess = 2*g - g**3. % g can either be 1 or -1

456 g := .5. % User defined guess

457 g := g_with_guess.

Figure 10-22. Users can override the default guess using the := aggregator. Here
on line 456, the default guess is set as .5. When g_with_guess is an empty R-expr—
which is the hard-coded default for a guess—the rule on line 457 will not contribute
any value. Therefore, ‘g’ will take the value from line 456. Once g_with_guess has
some non-null value, then ‘g’ will take the value from line 457. This initial guess
causes ‘g’ to converge to value 1 instead of −1.

10.5.3 Guesses are Un-bypass-able

Guesses have additional requirements on them compared to “normal” memos from

section §10.1.2. Most importantly, guesses are not bypassable. The reason is a

guess can change the observed semantics of a Dyna program. The semantics of

Dyna only require that the system find an assignment to all terms in the program

that is consistent (section §2.5). In practice, there are many di�erent consistent

assignments to the terms in the program. For example, consider the program in

figure 10-23, which has a cycle involving ‘a’ and ‘b’.

458 a := 1.

459 a := b.

460 b := 2.

461 b := a.

462 print b. % print either 1 or 2 depending on guess

Figure 10-23. Dyna program which prints 1 or 2 non-deterministically depending
on where the back-chaining cycle is broken and how a guess is made. If the value
of ‘a’ is guessed as null, then the value of ‘b’ will be set to 2 on line 460. This causes
‘a’ to take on the value 2 as well, by the definition of the := aggregator, the last line
of the program which is non-null for a rule defines its value, and in this case it will
be line 459 is now non-null as ‘b’ is defined as 2. Conversely, if ‘b’ is guessed as null,
then ‘a’ will be set to 1 due to line 458, therefore ‘b’ will also take on the value of 1
by the definition of the := aggregator and line 461.

159

The value which is returned by ‘a’ and ‘b’ can either be 1 or 2 depending on the

order in which guesses are made. The Dyna specification says that either value

is acceptable, as Dyna only requires that the assignment to all expressions is

consistent.

A more extreme version of figure 10-23 when considering Dyna’s requirement

to make an assignment consistent is shown in figure 10-24.

463 g = g.

(a) Dyna

g(Val) → (Val=only(Inp, g(Inp)))

(b) R-expr

Figure 10-24. The Dyna rule ‘g’ can take on any value and still be consistent with
its definition on line 463. Hence, whatever value is guessed for ‘g’ will persist.

Given the definition of rule ‘g’, it is “allowed” to take on any value. For example,

if ‘g = 77’, then we would have 77 = 77 which is consistent. Similarly, ‘g’ can take

on the value g = "hello", as "hello" = "hello", and is also consistent with g’s

definition.

10.5.3.1 Why Guessing Requires if-expressions

In section §10.2, I claimed that memoization involving cycles does not work if we are

memoizing Simplify directly. The reason is that we need to ensure that we intercept

user-defined R-exprs with guesses. If we instead memoized Simplify, then we might

encounter something that needs to be overridden by a guess but cannot be easily

recognized due to the di�iculty of comparing R-exprs for semantic equivalence.

Essentially, this means that we would either need to have a check for semantic

equivalence between R-exprs (which is impossible in general because checking

semantic equivalence is Turing-complete), or accept that guesses sometimes end up

ge�ing bypassed. Neither of these is acceptable, as the semantics of Dyna requires

consistent set of assignments to the values associated with terms (section §2.5).

160

464 class MemoizationContainer implements MessageListener {

465 final Rexpr original_rexpr; // The original R-expr (false if branch)

466 Rexpr signature_have_memoized; // what is currently memoized

467 final Rexpr what_want_memoized; // $memo representation

468 Assumption assumption; // replaced when memo changes (§10.4.1)

469 Rexpr the_memo; // The memo itself (true if branch)

470 }

Figure 10-25. The memoization container

10.6 Cleaning up the R-expr Presentation of
Memoization—Memos Held Outside of the
R-expr

So far, I have waved my hands when it comes to how memos are managed in an

R-expr. I have demonstrated that an if-expression can be used to override the

original R-expr (as needed) for memoization, and that the system can store the

memoized R-expr inside the true-branch of the if-expression. However, we still

lack details on how the R-expr is modified and how the relevant assumptions are

tracked with each R-expr.

In this section, I will lessen the abstraction and talk more specifically about how

these di�erent pieces of memoization fit together.

First, we will move the memo out of the R-expr. To do this, we are going

to replace the if-expression R-expr and use a memoRead(· · ·) R-expr to represent

the memo. The memoRead R-expr maintains a pointer/reference to the relevant

memoization container and has a list of one or more local variable names: memoRead(

memo_container_pointer, Y1, Y2,. . .,Yn). The memoization container (figure 10-25)

is a mutable data structure that contains the memo. The memoization container

can be referenced by multiple memoRead R-exprs at the same time. This allows

all memoRead R-exprs who access the same memo to have a consistent view of the

currently memoized R-expr. The fields on the memoization container are as follows:

1. The original R-expr.—This is used when something is configured to bypass the

memo or is not current computed

161

2. The signature represented as an R-expr.—This corresponds with the conditional

of the if-expression and records what is currently stored in the memo table.

3. An R-expr that tracks what we want to be memoized.—This is the $memo(·)

memoization control mechanism, which I will discuss in section §10.8.

4. An assumption that is associated with the current memo. Anytime the memo

is changed, the assumption is invalidated, and messages are sent to all down-

stream dependents, as previously discussed in section §10.4.1.

5. The memo itself, represented as an R-expr.

The variables Y1, Y2,. . . ,Yn on the memoRead(memo_container_pointer,Y1, Y2,

. . .,Yn) refer to local variables, which allows variable renaming in the R-expr which

uses memoRead as a sub-R-expr. Inside the memoization container, variable names

are normalized to known variable names like X1, X2,. . . ,Xn. When memoRead is rewrit-

ten as an R-expr returned from the memoization container, the returned R-expr’s

variables are renamed to Y1, Y2,. . . ,Yn to match the local context.

10.6.1 Memoization Container

Comparing the memoization container with the if-expression, we can see that

we maintain all the same capabilities as with the if-expression. The signature in

the conditional test of the if-expression is held in the signature_have_memoized

variable, the true-branch corresponds to the the_memo R-expr, and the false-branch

corresponds to the original_rexpr. The new addition in the memoization con-

tainer is the what_want_memoized R-expr variable.

The what_want_memoized R-expr is the memoization policy, which is defined

using $memo. The reason we separate the policy from the signature of what is

memoized is that sometimes the policy is not helpful when it comes to thememoized

R-expr.

For example, consider the case where the signature is directly derived from the

memoization policy. Suppose that our memoization policy says that the system

should memoize “everything”. In this case, the policy can be represented as the

R-expr 1. However, this is not a useful R-expr when it comes to our rewrite rules.

Recall that we can introduce an if-expression using any R-expr (which represents

162

our memoization policy, rewrite rules 66 and 67). As such, if we use a memoization

policy of 1, we end up with R→if(1,R,R)→if(1,1*R,R) where 1*R does not yield

any useful rewrites.

Alternately, consider the case where the memoization signature is di�erent

from the memoization policy. Again, suppose that the memoization policy says

memoize everything, which is represented as the R-expr 1. However, we are now

going to say that the signature represents queries that we have encountered before

and have managed to do useful rewriting on the R-expr. In other words, we can

now have a memoization signature like (X=2)*(Y=3)+(X=7)*(Y=11) . This means

that the memo corresponds with an R-expr like R→if((X=2)*(Y=3)+(X=7)*(Y=11),

(X=2)*(Y=3)*R+(X=7)*(Y=11)*R,R) . The R-expr (X=2)*(Y=3)*R and (X=7)*(Y=11)*R

are likely to have useful rewrites as we can condition those rewrites on the values

of X and Y.

10.6.2 Handling Memos we “Want” but do not “Have”

It is o�en the case that what a user wants memoized, as defined policy, and what

the system has, memoized as tracked by the signature, are o�en not aligned. As

such, when an inconsistency is detected, the memo’s signature and memoized

R-expr are updated. This is done by waiting for queries to be made against the

memoRead R-expr, which are then checked against the policy. When the policy

indicates that a query should be memoized, that query will have a memo created,

just like in sections § 10.2 and 10.5. Conceptually, the memoization policy held in

what_want_memoized can be handled by an if-expression as shown in figure 10-26.

163

memoRead(container, · · ·) ≈ if(container.what_want_memoized(· · ·),
readOrMakeMemo(container, · · ·),
container.original_rexpr(· · ·))

Figure 10-26. Approximate interpretation for the memoRead(· · ·) R-expr. When the
memoization policy what_want_memoized is rewri�en as 0 or 1+R for some R, this
allows the system to determine if something should be memoized—in the same way
that an if-expression conditions on 0 or 1+R. In the case that the policy states that
something should be memoized, the “readOrMakeMemo” will check the current
memoization signature to see if the requested query is contained in the memo table.
In the case that the requested query is not contained, the memo and signature will
be updated as discussed in sections § 10.2 and 10.5.

Just like with an if-expression, when the memoization policy cannot be rewri�en

as 0 or 1+R for some R, the system will have to defer accessing the memo. Hence, a

bad memoization policy can cause the system to become inoperable.

10.7 Update Loop

It is o�en the case that there are many di�erent updates that are pending at any

given point in time. Dyna permits us to process updates to memos in any order we

choose. Dyna only requires that all memos are consistent with each other when all

updates have finished processing. Therefore, to handle this, we bu�er all updates

using a (priority) queue.

The update queue is a global object. The system runs a loop processing updates

until the queue is completely empty. When processing an update, the system

will check if the current memo is consistent by recomputing it from the original

R-expr using SimplifyNormalize (algorithm 1) and check if the resulting R-expr

is semantically equivalent to the currently memoized R-expr.151 In the case that

the memo must be updated, the memo is updated first, and then the assumption

associated with the memo is invalidated, causing downstream dependencies to

receive notifications.

151In general, checking the semantic equivalence of R-exprs is di�icult unless we take special care
to ensure that the structure of the memo is su�iciently “simple”.

164

When a notification is received, a pending update is added to the queue,152 and

the update loop will continue its processing.

This is shown in algorithm 4.

1: function ProcessUpdates()
2: global UpdateQueue
3: while not Empty(UpdateQueue) :
4: work← Pop(UpdateQueue) ▷ Pop from the queue according
5: to the priority function
6: ▷“work.memo” is a pointer to mutable container which holds the memo itself. It con-

tains the �elds that track the original R-expr, the current memoized R-expr, and the
assumption which protects read operations performed against the memo.

7: R original ← work.memo.original_rexpr
8: global assumptionsTracker← /0 ▷ A set of all assumptions depended on during
9: SimplifyNormalize, automatically tracked
10: R new← SimplifyNormalize(R original)

11: if SemanticallyEqivalent(R new, work.memo.the_memo) :
12: No Op ▷ No update happens if it is semantically equivalent
13: else

14: oldAssumption← work.memo.assumption ▷ Save a pointer to existing assumption
15: work.memo.the_memo← R new ▷ Update the memo
16: work.memo.assumption← new Assumption()

17: oldAssumption.Invalidate() ▷ Invalidate the old assumption

18: for assumption ∈ assumptionsTracker :

19: assumption.subscribe(work.memo)

Algorithm 4. A rough outline of the Process Updates Function. The function uses
a global update queue (which can be a priority queue) to choose the next unit of
work. It recomputes the R-expr R from scratch based on the original definition.
If the newly computed R-expr is semantically equivalent, then the memo is not
modified.

10.8 Controlling Memoization

When it comes to memoization, there are many di�erent memoization policies,

which can have a significant impact on the runtime and memory e�iciency of the

152The queue has previously called an agenda in prior publications on Dyna. This was done
previously to align the terminology with parsing algorithms [59].

165

overall system. For example, the order in which updates are processed can be the

di�erence between a program running in linear time or exponential time (section

§2.7.1). Furthermore, there exist programs where a bad memoization policy can

cause the program to become not terminating.153

Ideally, the Dyna system would automatically figure out how to best apply

memoization and prioritize updates. Unfortunately, at this time, automatic config-

uration of memoization is still an open research question. Instead, what we have

currently is a mechanism to allow users to define their own memoization policies

and update orders using $memo and $priority, which are described here again but

were previously introduced in section §2.7.

10.8.1 $memo(·) = "none"|"null"|"unk".
154

The most significant control mechanism for memoization is $memo, which essentially

controls if memoization is used or not, and should therefore fallback to the original

un-memoized R-expr. As previously discussed in section §2.7, $memo(·) takes one

argument thatmatches the structured-termwith the same name as the user-defined

term and “returns” the string "none", "null", or "unk" to indicate “how” and what

should be memoized.154

Internally, in the implementation of memoization, we are instead going to think

about $memo slightly di�erently from the surface-level syntax. Instead, we will say

that the memoization policy defined by $memo and represented as an R-expr is in

one of three “states”. These states are as follows:

1. The query is memoized (or it should be memoized),

2. The query should not be memoized, and it should fallback to the original

R-expr, and

3. There is not enough information yet to determine whether the memoization

policy is in state 1 or state 2.

153For example, in the Fibonacci program figure 10-8, a memoization policy of
$memo(fib[X:$free]) = "null". will cause the system to eagerly memoize all Fibonacci
numbers, for which there are an infinite number of. Hence, this will not terminate.
154 We could have used any ground value as the returned value from $memo. The names "none",

"null", and "unk" were chosen to maintain continuity with prior work on memoization on the
Dyna project [66, 67].

166

The first state where a memo should exist corresponds with "null" being re-

turned by the $memo function. The second state with no memo corresponds with

"none" being returned and is also the default state if nothing else is defined for

$memo. The third state of being “unsure” corresponds with having $memo represented

as an R-expr that cannot be fully rewri�en yet. Notably, the keyword "unk" does

not correspond to any single state (section §10.8.3). Instead, "unk" represents a

common case that switches between the third state of “unsure” and the first state

where a memo exists once enough variables are grounded and will be discussed

further in section §10.8.3.

10.8.2 $ground and $free Annotation

When it comes to memoization policy, the system needs to determine when it must

check the memo, and it is allowed to bypass the memo and fallback to the original

R-expr. Sometimes, though, we do not care about the value that is being stored but

rather that there is enough information available in the query such that any memo

that we create will be useful. To support di�erent memoization policies, we have

$ground(·) and $free(·) which work as annotations on the state of the variable.

To see how $ground and $free work, let us consider the following memoization

policy for the rule foo(X,Y,Z):

471 $memo(foo[X,Y,Z]) = "null".

Given the policy on line 471, there is no requirement on the value for the arguments

to foo, hence the memo for the user-defined foo(·,·,·) is allowed to be equivalent

to the original R-expr.155

Conversely, suppose that we have the memoization policy:156

472 $memo(foo[X:$ground,Y:$ground,Z]) = "null".

Here, we require that X and Y are known ground values before a memo is cre-

ated. This means that our memo signatures will look something like ‘(X=1)*(Y=7)+

(X=5)*(Y=3)+ · · · ’, and that the memoized R-expr can depend on the values of X and

155In the case of a cycles, having a "null" memo can still be useful as the "null" memo will
break the cycle, as seen in section §10.5.
156This is making use of the colon notation, which was presented as a Type Declaration section

§2.8.3.

167

Y. Hopefully, this will result in useful rewrites being completed before the resulting

R-expr is stored in the memo.

The way that $ground is implemented is that it requires that its argument take

some value before it returns true. If the value is not known, then $ground becomes a

delayed constraint and that prevents the R-expr from being rewri�en. This can be

implemented by defining a single rewrite rule that checks that a variable is ground,

as in figure 10-27.

12. Jground(X)KE = 1
ground(X)

85
−→ 1 if X∈ G

Figure 10-27. Semantic definition and rewrite rule for $ground

Because $ground prevents the memoization policy R-expr from being rewri�en, it

delays accessing the memo table as the memoization policy must be rewri�en as a

multiplicity before the system is allowed to check the memo or bypass the memo

(section §10.6.2).

To complement $ground, $free is designed to annotate variables that may not

yet know their value (which is typically called free in logic programming). Unlike

$ground, $free is a no-op and only serves to indicate that $ground was not forgo�en.

The reason that $free is a no-op is that we want to avoid inconsistent behavior

when it comes to reading a memo. For example, suppose that we had a memo for

the query foo(1,X) where X is a free variable. This memo can answer the query

foo(1,3), as it is possible to unify these two expressions together with X=3. However,

if we explicitly matched against the variable X being free, then this would be an

inconsistent memoization policy and could potentially bypass guesses, which is

not allowed (section §10.5.3).

10.8.3 "unk"Memos

The keywords "null" and "unk" were chosen to maintain continuity with prior

publications on memoization and guessing in the Dyna programming language [66,

67]. That said, only the externally observable behavior of "null" and "unk" is

consistent with the prior work. The conceptualization of "null" is quite similar to

the prior work, but "unk" is very di�erent.

168

In the prior work [66, 67], "null" and "unk"were used to represent the “default”

value of a memo. With "unk" standing for “unknown value”, and "null" repre-

senting that the memo has a “null valued” guess that must be validated. When

an "unk" value was encountered during back-chaining, the system would imme-

diately perform the computation using the original program and save the result.

Conversely, a null guess would be eagerly computed ahead of time—as in the style

of forward-chaining Datalog. Hence, the distinction between "null" and "unk"

was deciding when the computation is performed.

In the prior work, without R-exprs, it was in fact very important to make this

distinction about when computation happens. Delightfully, with R-exprs we can

be a bit more fast and loose about when computation happens in terms of our

memoization formalism. The reason is that R-exprs can represent computation

rather than a value in the language (e.g. a memo that can contain plus(1,2,X) vs.

the value 3). Therefore, we can memoize R-exprs that represent partially evaluated

computation, which was not allowed under the prior formalism.

As such, we do not have to worry about ensuring that our memoized R-exprs are

fully rewri�en into a single value assignment. This leaves one question: what did

an "unk" memo represent (according to the prior work), and how are we going to

emulate "unk" with R-exprs. In the prior work, the memo table consisted of fully

grounded terms as keys (e.g. foo(1,2,"hello")), and associated a value with each

key (e.g. 3,7,"hello",bar[1,2], etc.). Therefore, when using a memoization policy

of "unk", the prior work did not allow queries of the form foo(1,Y,Z) against the

memo table, as the previous approach cannot make any guarantees about terms

not found in the memo table, as their value is unknown. Hence, the prior work

only allowed queries for fully grounded terms like foo(1,2,"hello") when using an

"unk" memoization policy. As such, the "unk" memoization policy can be seen as

equivalent to requiring that all variables grounded: $memo(foo[X,Y,Z]) = "unk". ≡

$memo(foo[X:$ground,Y:$ground,Z:$ground]) = "null".

10.8.4 Implementation of $memo

With "unk" now represented in terms of "null", we now only need to handle the

three cases when implementing $memo:

1. When "null" is returned, we need to read from the memo table,

169

2. When "none" is returned, we need to skip the memo table and

3. When we do not yet know if it is "null" or "none" and need to defer the read

operation.

Conceptually, these three cases can be handled with an if-expression like R-expr.

If the conditional branch of the if-expression can be completely rewri�en as either

1+R for some R or as 0, then we do not know which branch of the if-expression

to return. This is identical to what I presented in figure 10-26, in how we use the

memoization policy. As such, we can define the variable what_want_memoized as

the R-expr:

proj(Name,

(Name=foo[X1, X2, X3])*

$memo(Name, "null"))

Figure 10-28. The “what want memoized” R-expr (line 467 of figure 10-25), which
adapts from the $memo memoization policy represented as an R-expr that returns
"null" or "none" or not rewrite and becomes a delayed constraint, which happens
if there is enough information in the context C rewrite the user-defined $memo

R-expr.

The Name variable holds the structured term for the user-defined term for which a

memo represents. The $memo(Name,"null") is a call to the $memo R-expr definition.

When $memo returns "null", this R-expr will be rewri�en as 1, causing the if-

expression in figure 10-26 to access the memo table. When $memo returns "none",

then this will be rewri�en as 0, causing the if-expression in figure 10-26 to fall

through to the original R-expr. In the case that $memo cannot be fully rewri�en

(possibly caused by a $ground annotation), the if-expression in figure 10-26 will

defer reading or bypassing the memo.

10.8.5 Ordering Updates with $priority

The order in which updates are processed can have a significant impact on the

runtime of the program. $priority(·) supports di�erent ordering of updates by

defining a floating point number which is used to define the priority of an update.

170

Whenever an assumption is invalidated and an update is pushed to the update

queue, the $priority function is consulted, using the user-defined rule name and

any values that are known to compute a floating point value. This value is used

to sort the priority queue, which contains all pending updates. The priority is

only computed when updates are pushed to the queue to avoid the complexity of

reordering the queue due to values that $priority depended on changing.

171

Chapter 11

A Realistic Implementation of
R-exprs

So far we have been discussing an abstract idea of R-exprs (chapters 5 and 6),

rewriting R-exprs using Simplify (chapter §8) and extensions to this design in the

form of rearranging R-exprs (chapter §9) and adding memoization (chapter §10).

In this chapter, I am going to transition from abstract ideas and focus on a real

implementation of R-exprs and R-expr rewriting. Note that some design choices

discussed in this chapter were made with the intention of JIT compiling R-exprs,

which will be discussed in chapter §12.

11.1 Design Goals for our Implementation

Before diving into the details about the implementation itself, let us discuss what

the goals are for this implementation of Dyna and R-expr rewriting.

1. It should be usable and capable of supporting the kinds of Dyna programs

that we expect users to write.

2. It should be “e�icient” so that it can be used on “real” problems. — Recall that

our target audience for Dyna is Machine Learning (ML) and Artificial Intelli-

gence (AI) researchers. This means that the kinds of problems we expect o�en

have the form of performing very similar computations on slightly di�erent

172

data many times in a loop. An example of this kind of computation would be

matrix multiplication.

3. It should make the implementation of R-exprs and R-expr rewrites easy. — A

complete Dyna implementation requires dozens of di�erent R-expr kinds and

hundreds of rewrite rules. Additionally, there is a lot of potential for future

work to introduce new R-expr kinds and rewrite rules.

4. It should support all of Dyna. — There have been several implementations

of Dyna over the years.157 However, previous implementations have only

implemented a small subset of Dyna. Building a complete implementation of

Dyna demonstrates that the term rewriting approach in this dissertation is the

“right formalism” and su�icient to implement a complicated logic programming

language like Dyna.

5. It should support (JIT) compilation of Dyna programs. — This is a secondary

goal of wanting the implementation to be “e�icient” and “fast”, but this is a

significant design constraint on the implementation, so I mention this at the

start as a design goal.

11.1.1 What does “E�icient Implementation” Mean?

We would like Dyna to execute programs at a level that is comparable to the “first

implementation (of an algorithm) that a user would write in a procedural language.”

In other words, we understand that a skilled programmer can make an algorithm

faster through the use of clever tricks and knowledge about computer architecture.

Our goal is not to compete with the skilled programmer. Instead, our goal is that an

average skilled programmer will be able to develop programs in less time with Dyna

when compared to a procedural language (due to Dyna’s simplicity) and have the

program run at a level that is comparable to what an average skilled programmer

157There are seven implementations of Dyna, including the one discussed in this chapter (de-
pending on how you count). The major implementation a�empts are linked at http://dyna.org/
#downloads. The source discussed in this chapter is at https://github.com/argolab/dyna3. Pre-
vious Python prototypes that use rewriting can be found at https://github.com/argolab/dyna-R
and https://github.com/argolab/dyna-R/blob/backend-v2/dyna_match_paper/rexprs.py.

173

http://dyna.org/#downloads
http://dyna.org/#downloads
https://github.com/argolab/dyna3
https://github.com/argolab/dyna-R
https://github.com/argolab/dyna-R/blob/backend-v2/dyna_match_paper/rexprs.py

would write in a procedural programming language.158

To illustrate this point, let us consider a programwhich computes a matrix-vector

product:

473 a(X) += b(X,Y) * c(Y).

If we ran line 473 using the execution strategies that we have discussed so far, we

would represent b(X,Y) and c(Y) as the disjunctions in figure 11-1.

b(X,Y, Val) →
(X=1)*(Y=1)*(Val=3)+

(X=2)*(Y=1)*(Val=7)+

(X=1)*(Y=2)*(Val=9)+

...

(a) Example R-expr for b(X,Y)

c(Y, Val) →
(Y=1)*(Val=11)+

(Y=9)*(Val=23)+

(Y=5)*(Val=0)+

...

(b) Example R-expr for c(Y)

Figure 11-1. Example R-exprs used by line 473.

Accessing the element from the disjunctions in figure 11-1 requires many steps

of rewriting. We would have to use the distributive rewrites to expand out the

R-expr out (e.g. (X=1)*(Y=1)*(ValB=3)*((Y=1)*(ValC=11)+(Y=9)*(ValC=23)+(Y=5)*

(ValC=0)+· · ·)+· · ·) which would create a large R-expr and be ine�icient, requiring

hundreds of rewrites to access the relevant elements from the b(X,Y) and c(Y)

relations.

Conversely, let us consider how line 473 would be wri�en in a procedural

language:159

158At this point, we are not considering the constant factor overheads of implementation (such
when choosing to write a program in slower Python vs faster C).

159Assuming that we are writing out the loops for the matrix-vector product and not using a
library function.

174

1: function MatrixVectorProduct(b[0..N, 0..M], c[0..M])
2: ret←MakeZeroVector(N)
3: for X = 0 to N :
4: for Y = 0 to M :
5: ret[X]← ret[X] + b[X , Y] * c[Y]

6: return ret

Algorithm 5. Example procedural implementation of matrix-vector product

Here, MatrixVectorProduct is able to assume that the representation of ‘b’ and

‘c’ are dense arrays/matrices of numbers. This makes accessing elements in the

array (line 5) e�icient, taking O(1) time. Furthermore, the MatrixVectorProduct

function is able to know the size of the matrix and vector using the integers N and

M and have an iterator that loops over the domain of the matrix and vector, being

the integers between [0,N) and [0,M) (lines 3, 4). Finally, the place for the final

result is allocated before the computation is started (line 2). This means that the

procedural code does not have to store all the intermediate multiplications and

instead aggregates the value along the way into the final location (in memory).

Our goal, with R-expr-based rewriting, is to maintain the representational power

of R-exprs, while having the execution of R-exprs be comparable to algorithm 5, in

that we can avoid the overhead of naively rewriting R-exprs.

11.2 Implementation Overview

Given the requirements that I listed above for a realistic implementation, I evaluated

a number of di�erent possibilities for the implementation of Dyna. I make no

claim that this design is the “best” approach. However, the design presented in

this chapter is the third implementation of Dyna that I have completed during

my Ph.D., and it has been designed with the insight gathered from the prior two

implementations. I believe that the design presented here is worthy of consideration

for anyone looking to build a term rewriting system for a programming language.

First, for the choice of programming language, I choose to use Clojure [92].

Clojure is a LISP-like programming language that targets the Java Virtual Machine

(JVM). Clojure is a reasonably fast language, running a li�le slower than Java but

175

faster than many other high-level languages. Clojure can also interface with Java

libraries, which is convenient for interfacing Dyna with Java (and Python through

the use of Java-Python interfaces). The main reason for choosing Clojure was that

there are a few features that are essential for implementing Dyna. These are macros,

the ability to modify ASTs of the host language, and a runtime evaluate function.

Macros and AST manipulation are essential for making the implementation of the

many di�erent rewrite rules and R-expr kinds e�icient, and the runtime evaluation

function is used to generate R-expr-dependent procedural code. Admi�edly, any

LISP-like language satisfies these requirements.

Dyna’s internal state is represented using R-exprs. All the major components

inside Dyna pass R-exprs between them. The flow of data/R-exprs is shown in

figure 11-2.

11.3 Dyna’s Front-end

Dyna provides a Read-Print-Eval loop (REPL) as a front-end, as well as Java and

Python API (section §2.3.1). The API, and REPL accept strings of Dyna code that

represent queries and updates (as previously shown in section §2.3.1). The Dyna

source is converted into R-exprs and then rewri�en completely.

The conversion process from a string of Dyna source code into an R-expr is

done with the help of two special R-exprs. The first is string_to_ast(S,Ast), which

converts a string of Dyna code into the Dyna AST. The implementation of the

string_to_ast(S,Ast) rewrite rules uses Antlr4 [110]160 to parse the string of Dyna

code and assigns the AST to the AST variable. The Dyna AST is represented using the

same term class used to represent structured terms (section §2.1.1). This is similar

to Prolog where rules are represented using terms. This allows macros defined in

Dyna to modify the Dyna AST before it is converted into R-exprs (section §2.10.2).

The second R-expr is ast_to_rexpr(Ast,ResultVariable, VariableNameMap).

ast_to_rexpr takes three arguments. The first variable is the AST itself. This can be

a top-level AST, which comes from parsing an entire file or a line of code from the

REPL, or this can be a smaller unit of the AST, which corresponds to an expression

inside of the Dyna source code (as defined in chapter §2). The second variable

160Antlr4 is an o� the shelf parser/lexer generator which generates a parser in Java.

177

ResultVariable is the result from evaluating an expression in Dyna. In Dyna, all

expressions return some value. For example, the AST corresponding to ‘1 + 2’ is well

formed and will return the value 3 once evaluated. The reason we need the return

variable as an argument is that R-exprs do not have a return value but instead return

the multiplicity, which indicates that the assignment is “true”. Therefore, we must

assign the return value of the Dyna expression to a given variable when converted

into R-exprs.161 Asts that are not expressions, such as top-level asts and declaring

rules, are made into expressions by defining them to return the dummy value of

true. The third argument is a map from string variable names, as used in the source

code, to the value object types: VariableNameMap : String→ V . The R-expr is not

required to use the same identifier as the source code; hence, the map tracks the

association between names and variables. For example, {“X” ↦→ VarX72,“Y ” ↦→ 7}.

The string_to_ast R-expr can be considered a “proper” R-expr, in that it can be

completely defined as a relation on its arguments. On the other hand, ast_to_rexpr

is not proper. When ast_to_rexpr is rewri�en, it modifies the global162 state of

the Dyna system. This includes changing the definition of user-defined R-exprs

(section §5.2.2.11).

Once the Dyna system, which is controlled by the API (section §2.3.1), is finished

evaluating all queries and updates provided as a string, the results from queries

are returned to the user. If the resulting R-expr from a query is “su�iciently simple”,

then Dyna automatically extracts the value from the R-expr representation so it

is more easily interpretable by the driver program. This includes ground values

such as integers and strings, as well as arrays and hash maps. If the result from a

query is not a simple R-expr, then the R-expr itself will be returned to the driver

program. Users are expected to write programs that result in simple R-exprs and

values, therefore an R-expr being return generally indicates that “something has

gone wrong163” when evaluating a query. Hence, users are not expected to build

driver programs that understand R-exprs. The Dyna REPL, which is built upon the

161This is similar to representing the return value as an argument in a Prolog program. For example,
append([1,2], [3], [1,2,3]).
162Throughout this chapter, I mention di�erent global variables which are used to track the state

of the system. More precisely, the global state is actually thread-local and specific to the current
invocation of Simplify running. In this dissertation, the system is currently single-threaded, so
there is no meaningful distinction.
163In the same way that a computer algebra system may return a large, complicated expression.

178

Dyna API, will a�empt to pre�y-print R-exprs.

A high-level overview of the front-end is shown in algorithm 6.

1: function DynaFrontEnd(Source)
2: R←proj(A,string_to_ast(Source, A)*ast_to_rexpr(A,true, {}))
3: repeat
4: ProcessUpdates() ▷ Call pending updates on the update queue, algorithm 4

5: global162 QueryResult← /0

6: R2← SimplifyNormalize(R) ▷ Evaluate the program, modifying global as needed

7: assert R2 == 1 ▷ The top-level AST rewrites as multiplicity 1 upon success

8: until isQuery(Source) and isEmpty(UpdateQueue) ▷ If pending updates, run

updates and redo queries, algorithm 4

9: ▷ �ery results are saved into the QueryResult bu�er by ast_to_rexpr

10: if QueryResult matches (ResultVariable=Value) :
11: return Value ▷ Avoid returning the R-expr if the R-expr is “su�iciently simple”

12: else
13: return QueryResult ▷ Return the entire R-expr produced by the query

Algorithm 6. The front-end for Dyna is called on a single update or query at a
time. An update/query is wrapped in a standard R-expr (line 2) and is passed to
SimplifyNormalize (line 6) where all execution happens via rewrites. If a query is
performed that causes guessing (which can cause pending updates on the update
queue), then those updates will be processed, and the queries will be redone
(line 8).164Once the query has converged, the result is returned to the user, with
su�iciently simple values being cast into a usable format.

11.4 Realistic Rewriting, Part 1—Redesigning
Simplify(Normalize)

In this chapter, we are trying to make our implementation of rewriting faster. As

such, we are going to make some changes to the approach described in chapter §8

in hopes of making execution run faster.

164A guess will initially made with the 0 R-expr, which may cause the result from the query to be
0 also. Once the guess converges, the query may have a non 0 result. This was previously shown in
section §10.5.

179

Previously in section §8.2.1, we had the functions Simplify (section §8.A) and

SimplifyNormalize (algorithm 1). The function Simplify recursively invokes itself on

the R-expr performing any rewrites it can apply. To find relevant rewrites, Simplify

matches the current R-expr and uses the context C to identify conjuncts without

rearranging the R-expr. SimplifyNormalize invokes Simplify in a loop until no

more rewrites can be applied.

The first problemwith this design we will address is that Simplify chooses among

all possible rewrites equally. However, not all rewrites are equally useful or can

be matched quickly. To manage this, we separate our rewrites into three separate

categories, depending on what information is needed to match the rewrite and

what priority the rewrite should run at.

1. The first category we call standard rewrites. These rewrites only need a local

view of the R-expr and knowledge about bindings to variables, which is avail-

able in the context C. These rewrites correspond to common operations such as

performing addition between values (e.g. rewrite rule 28, plus(1,2,X)→(X=3)).

These rewrites are classified as standard as they are the most common kind

of “useful” rewrites that we have. Furthermore, variable bindings can be

e�iciently tracked using an associative map (hash map) inside the context C.

This simplifies the context as it does not require complete knowledge about all

conjunctive R-exprs, which means that maintaining the context is e�icient.

2. The second category of rewrites are inference rewrites. These rewrites require

the complete context with all conjunctive R-exprs. Because all conjunctive

R-exprs are tracked in the context, this is more “heavy” in that R-exprs and

indexes on R-exprs are required. Furthermore, matching against the context is

much more expensive. When the system only checks variable assignments, it

can perform an O(1) time lookup in a map. However, when matching with

R-expr in the context, it must scan through many potential matches.

Because these rewrites are expensive to match, they are run with the lowest

priority.

The reason these rewrites have been named inference rewrites is that they

usually infer the existence of new constraints using propagation. For exam-

ple, rewrite rule 34 combines two lessthan constraints, e.g. lessthan(A,B)*

180

lessthan(B,C)
34
−→lessthan(A,B)*lessthan(B,C)*lessthan(A,C). In fact, other

rewrite systems sometimes call these kinds of rewrites propagators [72].

3. The third category of rewrites are constructor rewrites. These rewrites are

run with the highest priority. They are run immediately when an R-expr is

constructed. These rewrites are mostly used to keep the R-expr tidy. For

example, rewrite rules 13 to 15 are the identities involving 0 and 1, and will be

removed from a conjunction immediately rather than being kept around in

the R-expr representation (e.g. 0*R→0).

With this division of rewrite methods, we have two di�erent versions of the

Simplify function: SimplifyOnlyFast and SimplifyAllRewrites. These new func-

tions behave the same as the Simplify function from chapter §8, in that they take a

context and an R-expr and rewrite it as another R-expr, but SimplifyOnlyFast only

invoke the faster-to-match standard rewrites and SimplifyAllRewrites invokes

both standard and inference rewrites. The constructor rewrites are invoked im-

mediately upon the construction of an R-expr, and therefore are “hidden” and do

not require a “visually obvious” call to Simplify in the code. The function Simplify

refers to whichever version of Simplify is currently “active”.

The SimplifyNormalize function is redesigned to first complete all of the fast

rewrites by fixed-pointing the SimplifyOnlyFast function and then calling the

SimplifyAllRewrites function once to check if there are any inference rewrites

that can be performed. It will then go back to running only the fast rewrites until

all of those are completed again. This modified version of SimplifyNormalize is

shown in algorithm 7.

11.5 Declaration of R-exprs and Rewrites

As hinted at in the overview (section §11.2), we are going to make heavy use of

Clojure macros in the implementation of Dyna. The reason for this is that Dyna,

built on R-exprs, is made up of hundreds of di�erent R-expr kinds and rewrite rules.

Hence, we want to minimize the amount of code we need to write for each R-expr

and rewrite rule.

181

1: function SimplifyNormalize(R)
2: C← ⟨{} : Var ↦→ val},{R}⟩ ▷ Initialize empty context, ⟨ variables to values, R-exprs ⟩

3: repeat
4: repeat
5: R old ← R

6: R← SimplifyOnlyFast(R, C) ▷ Perform only rewrites that are “fast”

7: until R old = R ▷ Reached a fixed-point, no more fast rewrites

8: R← SimplifyAllRewrites(R, C) ▷ Perform all rewrites

9: until R old = R ▷ Reached a fixed-point, no more rewrites

10: return R

Algorithm 7. Simplify Normalize with di�erent priorities for fast rewrites.

11.5.1 Declaration of R-expr Kinds

To define R-expr kind in Clojure, the implementation provides the def-base-rexpr

macro. This macro creates a class165 that is specialized for the implementation of a

particular R-expr kind. It also sets up internal data structures associated with the

R-expr kind that are used for relevant meta-data, registering the R-expr kind, and

registering rewrites for the R-expr kind.

Using def-base-rexpr we can define some core R-expr kinds as follows:

474 (def-base-rexpr conjunct [:rexpr-list args])

475 (def-base-rexpr unify [:var a :var b])

476 (def-base-rexpr proj [:hidden-var var :rexpr body])

The first argument is the name of the R-expr, and the second argument is the names

of fields associated with each R-expr, along with types for each field denoted using

a Clojure keyword. The type annotation on the fields automatically configures how

di�erent methods on the R-expr behave. For example, :var represents a field that

holds value types, which can be variables or constant values. This automatically

configures the “rename variables”166 and “list all variable”167 functions to include

the :var annotated fields. Fields marked :hidden-var contain variables that are

projected out, and these variables are removed from the set of variables returned by

“list all variables”. Similarly, :rexpr represents a single R-expr, and :rexpr-list

165This is a Clojure deftype which gets compiled into a Java class file.
166“Renaming variables” was previously denoted with the R{X ↦→ Y} notation.
167The “list all variables” was previously denoted with vars(R).

182

represents an array of R-exprs.

This annotation using keywords handles around 90% of all cases that we need

when defining R-exprs. We can also override the definition of any method in the

case that we need to change something that only applies to one R-expr kind.

For example, we override the is-constraint?168 method to check that all of

the sub-R-exprs contained in a conjunction are constraints, in which case their

conjunction is also a constraint (line 479):

477 (def-base-rexpr conjunct [:rexpr-list args]

478 (is-constraint? [this]

479 (every? is-constraint? args)))

480 (def-base-rexpr unify [:var a :var b]

481 (is-constraint? [this]

482 true))

11.5.2 Declaration of Built-Ins

Most of the R-expr kinds and rewrite rules that we have to define correspond to

built-in R-exprs (sections § 5.2.2.3 and 6.3). Built-ins define numerical operations

(plus, times, cosine, etc.), logical operations (lessthan, lessthaneq, etc.), and other

primitive operations such as string concatenation.

To help define all of these R-expr kinds, we have another special macro:

def-builtin-rexpr, which calls def-base-rexpr and def-rewrite, which will

be defined shortly.

As an example, the complete definition of the plus(·,·,·) R-expr is as follows:

483 (def-builtin-rexpr plus 3

484 (:allground (= v2 (+ v0 v1)))

485 (v2 (+ v0 v1))

486 (v1 (- v2 v0))

487 (v0 (- v2 v1)))

488

489 (def-user-term "+" 2 (make-plus v0 v1 v2))

490 (def-user-term "-" 2 (make-plus v2 v1 v0))

The def-builtin-rexprmacro will define a plus R-expr which contains 3 variable

fields which are automatically named v0, v1 and v2. Lines 484 to 487 define

168Recall that constraints are R-exprs whose multiplicity is at most 1. (section §5.2.2.4)

183

the di�erent rewrite rules we have for plus. Line 484 corresponds with rewrite

rules 26 and 27 where all the arguments are ground (e.g. plus(1,2,3)→1). Similarly,

lines 485 to 487 corresponds with rewrite rules 28 to 30 which define the rewrites

for performing computation using plus. The variable that appears first in the paren-

theses is the variable that is assigned by the computation. The second expression

in the parentheses defines how the computation is performed. For example, when

the system rewrites plus(1,2,X), it will have v0 = 1 and v1 = 2. The variable v2

corresponds with the variable X and is assigned the value returned from (+ 1 2).

Hence, this is equivalent to rewriting plus(1,2,X)→(X=3).

Lines 489 and 490 define the plus R-expr under the names accessible from the

Dyna source code. The ‘+’ function (in the Dyna source) takes two arguments and

returns the third argument. Represented as v0,v1 and v2 respectively. Recall from

section §7.1.4, I mentioned that we do not have a subtraction R-expr, but instead

use the plus(·,·,·) R-expr with its arguments rearranged. This is what is happening

on line 490, with the v0 and v2 arguments switched.

The function make-plus is the constructor for the plusR-expr. It is defined by the

def-base-rexpr macro. The make-NAME functions internally run any constructor

rewrites that are marked to run when an R-expr is constructed.

11.5.3 Declaration of Rewrite Rules

One thing I a�empted to make easy is the declaration of rewrite rules. We have

literally hundreds of rewrite rules that need to be implemented. In previous rewrite-

based prototypes of Dyna that I developed, rewrites with large implementations

frequently resulted in di�icult-to-find bugs.169 Hence, having a short implementa-

tion for each rewrite makes it easier to visually inspect170 that a rewrite is correct.

The core mechanism for defining rewrites is the def-rewrite macro. This

macro takes a number of di�erent keyword arguments and a Clojure expression,

which computes the result of a rewrite. For the remainder of this section, I will

illustrate how the def-rewrite macro is used, to give an idea of what features

169A bug might only be obvious a�er many subsequent steps of rewriting have been performed,
which makes it very di�icult to locate a bug

170At this time, there is no automatic checking that a rewrite is implemented correctly. This would
require some executable representation of the semantic definitions (section §5.2) other than the
rewrite rules, which we want to check.

184

were necessary to concisely define R-expr rewrite rules.

11.5.3.1 First Declaration of a Rewrite Rule

We will start by looking at the def-rewrite definition for rewrite rule 28, which

performs the computation for built-in plus (e.g. plus(1,2,X)→(X=3)). Note: these

rewrites on plus are automatically generated by the def-builtin-rexpr defined

above on line 485 and do not appear directly in the implementation. I have chosen to

present rewrite rule 28 because it is a simple rewrite which is useful for illustration

purposes.

491 (def-rewrite

492 :match (plus (:ground A) (:ground B) (:free C))

493 (make-unify C (make-constant (+ (get-value A) (get-value B)))))

Figure 11-3. Basic version of def-rewrite for rewrite rule 28, e.g.
plus(1,2,X)→(X=3). Prolog would notate this as plus(+A,+B,-C).

In figure 11-3, the :match keyword argument specifies what R-expr this rewrite

rules will match against. The arguments A, B and C are matched to the variables

on the plus(A,B,C) R-expr. The notation used by :match is positional, in that it

is wri�en in the order in which fields on the R-expr were defined. Internally, this

generates code that directly accesses the relevant field on the plus R-expr class.171

The keywords :ground and :free are annotations that are used to match against

the variable. :ground and :free cause the R-expr matcher to check the context C

to see if there is an assignment to a variable. We have more keywords defined to

match more complex scenarios.

Rewrites return an R-expr that will replace the R-expr in the newly generated

R-expr data structure returned by Simplify. This is illustrated by line 493, which

returns the equality constraint (e.g. (X=Y)), wri�en as unify in the Dyna imple-

mentation (section §5.2.2.1). The variable C already is a variable172 so it can go

171This is the same as doing RexprObject.fieldName in Java. Coding this so that there is no
indirection through method calls turned out to be very important for making this matching fast.
172Because C is matched as :free, we know it must be a variable. In general, the R-expr plus

allows C to be a value type that can be a constant or a variable.

185

into the first argument of unify, which expects a value type. For the second value,

the system will compute A+B, which will be a numerical value. First, it needs to

read the value of A and B. This is done using get-value, which will either get the

value directly out in the case that it is a constant or read from the context C in

the case that it is variable. The context C is globally162 accessible, hence usable

by get-value. The make-constant constructor returns a value type, which is a

constant. Hence, the value assigned to C is embedded directly inside the unify

R-expr.

11.5.3.2 Assignment Rewrites

The above definition of rewrite rules is very general in that it matches R-exprs and

returns an R-expr. However, we have certain rewrite pa�erns that are su�iciently

frequent that we provide special handling. For example, we can assign a value to a

variable directly as in figure 11-4.

494 (def-rewrite

495 :match (plus (:ground A) (:ground B) C)

496 :assigns-variable C

497 (+ (get-value A) (get-value B)))

Figure 11-4. Rewrite rule defined which returns a value to be assigned to the
variable C, instead of returning an R-expr.

On line 497, we return the value to assign to the variable C instead of an R-expr

which represents the assignment.

The definition in figure 11-4 is conceptually equivalent to figure 11-3. However,

it is preferable to use figure 11-4. The reason is that figure 11-4 provides the system

with additional metadata on what the rewrite does. In this case, the system can

analyze the rewrite in figure 11-4 to identify that C is assigned a value a�er this

rewrite runs. Trying to extract this information from figure 11-3 would require

analysis of the Clojure source code that defines the rewrite. This information will

be used when compiling a sequence of rewrites in chapter §12.

Furthermore, the rewrite in figure 11-4 handles two rewrites at once. Observe

that on line 495, I have removed the :free annotation for the variable C. If the

186

variable C has already been assigned some value, the :assigns-variable behaves

as an equality check (rewrite rules 26 and 27). If not, it assigns a value to C (rewrite

rule 28).

11.5.3.3 Handling Invalid Inputs

In the above definition given in figure 11-4, we no longer return an R-expr. This

means that we cannot represent a failure or an invalid input by returning the R-expr

0.173

To handle this, we have two ways to represent failure. The first is returning the

0 R-expr, and the second is throwing a UnificationFailure174 exception175 as in

figure 11-5.

498 (def-rewrite

499 :match (plus (:ground A) (:ground B) C)

500 :assigns-variable C

501 (let [val-A (get-value A)

502 val-B (get-value B)]

503 (when (or (not (number? val-A))

504 (not (number? val-B)))

505 (throw (UnificationFailure.)))

506 (+ val-A val-B)))

Figure 11-5. Rewrite rule checking inputs and throwing a UnificationFailure
on line 505. Admi�edly, this rewrite is checking the type of the value assigned to
the variables A and B (lines 503 and 504) before it throws the exception, but recall
that Dyna handles type errors by rewriting as 0, and it is up to the system to detect
this and report the 0 to the user as a type error (rewrite rule 26 and section §2.8.3).

Throwing a UnificationFailure and returning the 0 multiplicity are used inter-

173Recall that an R-expr corresponds with a bag relation where 1 is returned when the assign-
ment to the variables is contained in the bag (e.g. section §5.2.2.3). Hence, if we pass values to
the plus(·,·,·) R-expr which are not supported, then this corresponds with multiplicity 0 (e.g.
plus("hello", foo[1,2], X)→0).
174The name UnificationFailure was chosen as it aligns with the idea of unification failure in

Prolog or CLP, which causes the system to backtrack and try another branch of a disjunction.
175Dyna runs on top of Java, and throwing an exception in Java is fast. This design may not work

as well if Dyna is implemented with another programming language.

187

changeably. However, there are some advantages to throwing the UnificationFailure

exception. The exception stops rewriting the current R-expr and parent R-expr that

would also be rewri�en as 0 as a result. For example, suppose that the system is

rewriting an R-expr like S+proj(X,R1*R2*R3*· · ·*Rn)), if R1 is rewri�en as 0 (R1→0),

then we would like the system to immediately stop rewriting the conjunction

(R1*R2*· · ·) and the projection, and returns control flow to rewriting the disjunction.

11.5.3.4 Modifying the Context

Rewrite rules can access the context C as it is tracked with a global variable.176

We have already seen get-value, which can read the value of a variable from the

context. We can also modify the context in place using methods like set-value!,

which tracks the assignment of a variable directly into the context.

Figure 11-6 shows the value assigned to the variable C being set directly into

the context. The rewrite rule can therefore return the multiplicity 1, instead of

assignment to the variable C. This is fine, as we do not require a representation

for C’s value inside of the R-expr itself. Using the context in this way enables us

to track the assignments to variables and avoid having to shu�le around equality

constraints inside of the R-expr.

507 (def-rewrite

508 :match (plus (:ground A) (:ground B) (:free C))

509 (let [val-A (get-value A)

510 val-B (get-value B)]

511 (when (or (not (number? val-A))

512 (not (number? val-B)))

513 (throw (UnificationFailure.)))

514 (set-value! C (+ val-A val-B))

515 (make-multiplicity 1)))

Figure 11-6. The variable C is set directly into the context C (line 514) without a
corresponding representation in the R-expr, as was done in figure 11-3.

176Previously in chapter §8 I denoted the context as being passed as an extra argument to all
functions. This quickly becomes cumbersome, so it is easier to reference the context using a global
(thread-local) variable.

188

11.5.3.5 Rewrite Priorities

As stated in section §11.4, we have three di�erent priorities for which rewrites

can run at: standard, construction, and inference. By default, a rewrite is created

with the standard priority. A rewrite’s priority is set using the :run-at keyword

argument as in figure 11-7.

516 (def-rewrite

517 :match {:rexpr (unify (:free A) (:ground B))

518 :check (has-context?)}

519 :run-at [:construction :standard]

520 (do

521 (set-value! A (get-value B))

522 (make-multiplicity 1)))

Figure 11-7. A rewrite on the unify/equality constraint, which is run when it is
first constructed. This rewrite directly adds the assignment of a variable in the
context using set-value!, as described above. With this rewrite included and
running when unify is constructed, this makes the rewrites defined in figure 11-3
and figure 11-6 equivalent. Note that construction rewrites run when the R-expr
is constructed, which means there might be an active context that can track the
assignment to a variable. Hence, line 518 defines a side condition as executable
Clojure code that checks that there exists an active context before this rewrite
matches.

Construction rewrites like figure 11-7 are used to keep the R-expr tidy. In this

case, we do not want to have equality R-exprs that assigns a value to a variable

represented in the R-expr. Instead, we prefer to track assignments using the context.

Hence, this rewrite “eliminates” the equality constraint from the R-expr and instead

tracks the assignments to variables using the context.

11.5.3.6 Inference Rewrites

Inference rewrites are the lowest-priority rewrites as they take the most e�ort to

match. These rewrites have access to the complete context that tracks conjunctive

R-exprs in addition to assignments to variables. Figure 11-8 shows rewrite rule 34,

which combines two lessthan constraints to infer a third lessthan constraint.

189

523 (def-rewrite

524 :match {:rexpr (lessthan A B (is-true? _))177

525 :context (lessthan B C (is-true? _))}

526 :run-at :inference

527 :infers (make-lessthan A C (make-constant true)))

Figure 11-8. Implementation for rewrite rule 34, which combines two lessthan

constraints together to infer a third. The :run-at (line 526) specifies that this
runs during inference with the complete context. The :context expression in
the :match checks in the context for a matching R-expr. The variable B used on
lines 524 and 525 is required to be the same variable.

Note that the match expression on lines 524 and 525 only lists one R-expr under the

:rexpr matcher, and the second under the :context matcher. The reason is that

Simplify recurses through the R-expr and performs matches quickly against the

R-exprs it encounters. In other words, once the first R-expr on line 524 is matched,

Simplify then checks the context for a matching lessthan constraint. As such, a

more accurate way to write rewrite rule 34 would be:

lessthan(A,B)
34
−→ lessthan(A,B)*lessthan(A,C) if lessthan(B,C) ∈ C

and lessthan(A,C) ̸∈ C

where lessthan(B,C) is checked if it is contained in the context as a side condition.

Additionally, observe that rewrite rule 34 checks that the newly inferred

lessthan(A,C) does not already exist. This is done to avoid inferring the same

constraint multiple times. This check is handled by the :infers keyword on

line 527.

11.5.3.7 Combining R-exprs for Inference Rewrites

O�en times when running inference rewrites that check the context, we do not care

about which R-expr appears in the context and which R-expr was directly matched

against. To handle this, we have the :match-combines keyword argument, which

177Note, that (lessthan A B (is-true? _)) is the trinary version of lessthan discussed in
section §7.1.4. The is-true? annotation is similar to :ground. However, it also checks value is true.
The underscore _ is a placeholder variable.

190

528 (def-rewrite

529 :match-combines [(lessthan A B (is-true? _))

530 (lessthan B C (is-true? _))]

531 :run-at :inference

532 :infers (make-lessthan A C (make-constant true))

Figure 11-9. :match-combines expanded this rewrite rule into multiple rewrite
rules of the form shown in figure 11-8. For each defined rewrite, one R-expr will
be matched in the local context, and the other R-exprs will be matched using the
context.

takes a list of R-exprs that must be matched. The rewrite is expanded into several

simpler rewrites of the form in figure 11-8.

11.5.3.8 Recursive Rewrites

As stated in section §8.2.2, we have special “rewrite rules” for recursive R-exprs

(such as conjunction) that recursively invoke Simplify. To this end, we can use the

function simplify as in figure 11-10, which automatically references the current

simplify function (either SimplifyOnlyFast or SimplifyAllRewrites).

533 (def-rewrite

534 :match (conjunct (:rexpr-list Rs))

535 (make-conjunct (map simplify Rs)))178

Figure 11-10. Recursive rewrite rules call simplify recursively applies rewrites to
sub-R-exprs.

Recall that in section §11.5.3.3, I said that we throw a UnificationFailure excep-

tion instead of returning a 0multiplicityR-expr. Throwing an exception immediately

aborts the loop on line 535 without any special handling.

178The method map in Clojure returns a lazy sequence. We need to force the sequence to evaluate
immediately using another Clojure function like vec or doall. I have omi�ed this in this example
as it does not contribute to understanding the rewrite definition.

191

11.5.4 Conclusion of R-exprs and Rewrites Declarations

This section has served both as documentation for our Dyna implementation and

as inspiration for anyone developing their own rewrite-based system. Given the

number of rewrite rules required to implement a rewrite-based language, such

as Dyna, I believe that it is critical to have a concise way to define rewrite rules.

From experience, I can say that more than 90% of the rewrite rules can be handled

succinctly, given the right abstraction. Allowing the remaining 10% of rewrite rules

to fall back on the host language works well to ensure that the rewrite system is

“su�iciently powerful”.

11.6 E�icient R-exprs Kinds

At the beginning of this chapter, I gave a definition for an “e�icient” program

(section §11.1.1). So far, we have only seen the same “ine�icient” R-exprs we have

had since chapter §5. To make R-exprs e�icient, we are going to replace some

R-expr kinds with R-exprs that are conceptually equivalent but have more e�icient

implementations. The way we accomplish this is by combining two or more R-expr

kinds into a single larger R-expr. This will allow us to handle frequent cases with

specialized code.

The two e�icient R-expr kinds we currently have are e�icient disjunction, which

merge disjunctions and equality constraints, and e�icient aggregation, which merge

aggregation and projection. Future work should consider the implementation of

additional e�icient R-expr kinds.179

11.6.1 E�icient Disjunctions

The first e�icient R-expr kind that we will look at is the e�icient disjunction. We

care a lot about the e�iciency of disjunctions as they occur very frequently when

translating a Dyna program into R-exprs, e.g., figure 11-11.

To start, the standard “ine�icient” disjunction is defined as follows:

179Some suggestions for e�icient R-expr kinds would be dense matrix representations or GPU
backed R-exprs and rewrites. (sections § 16.1 and 16.7)

192

536 a(0,0) = 1.

537 a(0,1) = 2.

538 a(1,0) = 3.

539 a(1,1) = 4.

(a) Dyna

a(X,Y, Val) → (Val=only(Inp,

(X=0)*(Y=0)*(Inp=1)+

(X=0)*(Y=1)*(Inp=2)+

(X=1)*(Y=0)*(Inp=3)+

(X=1)*(Y=1)*(Inp=4)))

(b) R-expr

Figure 11-11. Example Dyna program translated into an R-expr showing how
ground values can be a frequent R-expr we must handle. Each rule in the Dyna
program is converted into a branch of the disjunction, with the ground values
present in the rules present in the R-expr as ground assignments to variables.

540 (def-base-rexpr disjunct [:rexpr-list args]

541 ;; overridden functions on disjunction omitted

542)

Figure 11-12. Standard “ine�icient” implementation of disjunction.

The declaration in figure 11-12 matches the disjunction we have used since chap-

ter §5, with a disjunction of the form R1+R2+R3+R4 being represented as a list of

[R1,R2,R3,R4] inside of a disjunction R-expr kind. Unfortunately, this design has a

fatal flaw. Finding the right disjunct requires scanning the entire list of disjunctions

and applying Simplify to each sub-R-expr. For example, if we have the disjunct

(X=1)*R1+(X=2)*R2 +(X=3)*R3+(X=4)*R4 , then finding a particular value of X requires

us to perform a linear time scan through all of the disjunctive R-exprs.

To make the disjunction more e�icient, we create an index for the assignment to

the variable X. When X has a known value,180 we can access the relevant sub-R-expr

of the disjunct in O(1) time by finding it using a data structure such as a hash

table.

11.6.1.1 Requirements on the E�icient Disjunction Data Structure

To implement an e�icient disjunction, which merges disjunction and ground assign-

ments to variables, there are a few requirements that must be met. Currently, the

180Meaning that there is a sub-R-expr of the form(X=7) , where 7 is the known value.

193

implementation only has hash-table-based tries as the only data structure backing

the e�icient disjunction (section §11.6.1.2). Future work should consider adding

alternate implementations for disjunctions (section §16.1).

The data structure backing disjunctions combined with ground equality con-

straints needs to support the following:

1. In tracking the value assigned to a variable, the data structure needs to allow

any ground value. For example, suppose we have an array containing disjunc-

tive R-exprs, where the index in the array corresponds with the assignment to a

variable X. This would be able to represent the cases where X is assigned a small

integer, such as (X=0)*R1+(X=2)*R2+· · · . However, the data structure also needs

to handle the cases where X is not a small integer, such as(X="hello")*R3 . This

can be done by combining the array with some kind of auxiliary data structure

to handle the cases where X is not assigned an integer.

2. There needs to be some way to represent a “FREE VALUE”. The reason is that

we can have a disjunct like (X=1)*R1+R2 where there is no known value of X

on the second branch of the disjunct. One solution is to represent the “FREE

VALUE” internally using a special value that does not appear in G and, therefore,

can be distinctly recognized. I will represent the “FREE VALUE” case using a

question mark “?”. This means that the previous R-expr can be “normalized”

into the disjunct (X=1)*R1+(X=?)*R2 .181

3. There needs to be some way to e�iciently make queries against the data

structure that include the “FREE VALUE”. This means queries of the form:

((X1=1) or (X1=?)) and ((X2=2) or (X2=?)) and · · · and ((Xn="N") or (Xn=?))

The reason is that given an assignment (X1=1)*(X2=2)* · · ·(Xn="N") , we need to

match all disjunctive branches that unify with this assignment. This includes

branches where the assignment to a variable is known (e.g. (X1=1)*(X1=1)),

and branches where there is no assignment to a variable (e.g. (X1=?)). The only

case that can be eliminated is when the assignment to a variable di�ers from

the value we are querying for (e.g., (X1=1)*(X1="not 1")→0).

181The(X=?) is not an equality constraint, as we say that(X=?)→1 in all cases. This means that
we can have something like (X=7)*(X=?)→(X=7) . I have chosen to write this with an explicit
value “?” rather than using an R-expr like(X=X) as this more closely matches the implementation.

194

R1 +

(Y=7)*R2 +

(X=1)*R3 +

(X=1)*(Y=11)*R4 +

(X=1)*(Y=11)*R5 +

(X=3)*(Y=4)*R6 +

(X=3)*(Y=9)*R7 +

(X=3)*(Y=9)

(a) Standard R-expr

root

X=?
Y=? [R1]

Y=7 [R2]

X=1

Y=? [R3]

Y=11 [R4, R5]

X=3

Y=4 [R6]

Y=9 [R7, 1]

(b) E�icient Disjunctive Trie R-expr

Figure 11-13. A disjunctive R-expr in (a) is converted into a trie in (b). Each level
of the trie is associated with one of the variables (either X or Y in this example). Each
level of the trie is an immutable hash map. This allows for e�icient O(1) retrievals
in the case where a variable’s value is known. A special value is associated with the
case where the value of the variable is unknown, shown here as a question mark
‘?’. The leaf of the trie is a list that contains one or more disjunctive R-exprs.

4. There needs to be a way to “store” the R-expr in the data structure. In our

case, the data structure is in memory, so we can store an opaque pointer to the

R-expr. Future work could implement disjunctions with a disk-backed data

structure or SQL database-backed disjunctions, in which case, they will have

to implement serialization of R-exprs.

11.6.1.2 E�icient Disjunction using a Trie

The only data structure that we currently have for e�icient disjunction is trie. Each

level of the trie corresponds to a di�erent variable.182 The leaf of the trie represents

a disjunction of one or more sub-R-exprs. The R-exprs in the leaves are treated as

opaque pointers to R-exprs. This is shown in figure 11-13.

By having lists at the leaf of the trie instead of an arbitrary R-expr we can

completely replace the standard disjunction with the trie-based disjunction. This is

182The variable order is chosen arbitrarily. Future work should consider developing a be�er
heuristic for this.

195

useful as it allows us to integrate the trie disjunction into the R-expr rewrite with

a single rewrite rule that runs at the construction of the standard disjunction. This

automatically convert from the standard disjunction to the trie-backed disjunction,

as shown in figure 11-14.

543 (def-base-rexpr disjunct-efficient [:var-list trie-variables

544 :prefix-trie trie])

545 (def-rewrite

546 :match (disjunct (:rexpr-list Rs))

547 :run-at :construction

548 (let [variable-order (vec (exposed-variables183 rexpr))]

549 (make-disjunct-efficient variable-order

550 (convert-to-prefix-trie variable-order Rs))))

Figure 11-14. Declaration of the e�icient disjunct, and a rewrite rule which
converts from the standard disjunct to the e�icient disjunct upon constructions.
The variables on the trie are all exposed variables from the sub-R-exprs. The variable
order is chosen arbitrarily (line 548). Future work should consider developing a
variable ordering heuristic.

The path from the root of the trie to the leaves will have one level for each exposed

variable in vars(·). This allows R-exprs to be placed onto the most informative path

of the trie without having secondary variable assignments contained in the R-exprs

in the leaves. To determine the assignments to the variables, recall that all the

assignments to variables are in the context C and eliminated from the R-expr itself

(figure 11-7). This means that a�er invoking Simplify on each R-expr in the leaves,

we are guaranteed that there are no assignments R-exprs contained in the resulting

R-expr, and that all assignments to variables can be found using context C. Any

variable without a known assignment, as tracked by the context, is assumed to not

have a value, and is placed under the “FREE VALUE”, ‘?’ branch.

11.6.2 E�icient Memoization uses Tries

In chapter §10, I introduced memoization using only abstract R-exprs. In chapter

§10, I said that when an upstream dependency is changed, the system recomputes

183exposed-variables is the name in the implementation for vars(·) from chapter §5.

196

the R-expr using its original definition. If the system recomputes the entire R-expr,

this can be quite ine�icient. The memoized R-expr frequently represents hundreds

of di�erent disjunctive R-exprs (e.g. (X=1)*R1+(X=2)*R2+· · ·+(X=n)*Rn).

To makememoization realistic, we will only recompute some subset of the memo-

izedR-exprs. In other words, if the currentlymemoizedR-expr is(X=1)*R1+(X=2)*R2+

· · ·+(X=n)*Rn, then we might say that values which are memoized for (X=2) are in-

valid and need to be recomputed. In which case, the system will modify the

memoized R-expr so that it gets (X=1)*R1+(X=2)*R2new+· · ·+(X=n)*Rn , where R2 is

replaced with R2new.

To implement this, we no longer treat the memoized R-expr as a generic R-expr.

Instead, we explicitly use the e�icient disjunctive trie (section §11.6.1) as the mem-

oized R-expr. The trie supports “special rewrites” that implement e�icient modifi-

cation of the trie. These rewrites are exemplified by rewrite 86 and 87, and allow us

to delete entries matching a particular key184 from the trie, ge�ing a new trie, or

add R-exprs to the trie.

Rtrie * if((X=1)*(Y=2), 0, 1)
86
−→ Rnew trie ▷Delete from trie

Rtrie + (X=2)*(Y=3)*S
87
−→ Rnew trie ▷Add to trie

These “rewrite rules” make use of the trie implementation to share the internal

structure with the existing trie as much as possible. These rewrites are invoked

explicitly through special methods that are currently only supported by the trie.

11.6.3 E�icient Aggregation & Projection

The second e�icient R-expr kind we have is for aggregation and projection. So far,

our rewrite strategy for projection and aggregation requires many steps of rewriting

to rearrange them into a form that can be matched by the appropriate rewrite rules

(rewrite rules 49 and 55). When considering aggregation R-exprs, there are o�en

nested disjunctions and projections that need to be rewri�en away before we can

obtain the result of aggregation. For example, consider the program in figure 11-15.

184The key does not have to specify all of the variables.

197

551 a += b(X).

552 a += c(X,Y)*d(Y,Z).

(a) Dyna

a(Val) → (Val=sum(Inp,

proj(X, b(X, Inp))+

proj(X,proj(Y,proj(Z,proj(Tmp1,proj(Tmp2,

c(X,Y,Tmp1)*d(Y,Z,Tmp2)*

times(Tmp1,Tmp2,Inp))))))))

(b) R-expr

Figure 11-15. Dyna program with two contributions to the rule ‘a’.

This program has two contributions on lines 551 and 552 with each line having

variables that are projected out. With the rewrite rules we have so far, we have

to expand the projections using all possible assignments to the variables to solve

this R-expr. (E.g. proj(X,((X=1)+(X=2))*R)→proj(X,(X=1)*R)+proj(X,(X=2)*R)→

(R{X ↦→ 1}) + (R{X ↦→ 2}))

Ideally, the system would execute the R-expr from figure 11-15 in a manner sim-

ilar to the procedural implementation of the matrix-vector product in algorithm 5.

Conceptually, the nested loops for figure 11-15 look something like the code in

figure 11-16.

198

1: a← 0 ▷ Initialize a container to hold the result of aggregation

2: for x ∈ Domain(X, b(X)) : ▷ Loop over the domain of projected variables from line 551

3: (Inp= i)← “Simplify((X=x)*b(X, Inp))” ▷ Evaluate called user-defined rule

4: a← a + i ▷ Record the contribution directly into the result container

5: for x ∈ Domain(X, c(X,·)) : ▷ eval line 552, start enumerating proj-ed var X’s domain

6: for y ∈ Domain(Y, c(X,Y)) : ▷ Enumerate projected var Y’s domain

7: ▷ Evaluate a R-expr once enough arguments are known to trigger a rewrite

8: (Tmp1=t1)← “Simplify((X=x)*(Y=y)*c(X,Y, Tmp1))”
9: for z ∈ Domain(Z, d(Y,Z)) : ▷ Enumerate projected var Z’s domain

10: (Tmp2=t2)← “Simplify((Y=y)*(Z=z)*d(Y,Z, Tmp2))”
11: i← t1 “∗” t2 ▷ Evaluate times(Tmp1,Tmp2,Inp)

12: a← a+ i ▷ Once all R-exprs are evaluated, record the contribution

13: return a

Figure 11-16. An informal pseudocode example of the idealized evaluation of
the rule ‘a’ from figure 11-15. First, a container is initialized to hold the result
of aggregation on line 1. Then, the system sequentially runs the sub-R-exprs of
the disjunction. For the first disjunct, the system loops over the entire domain
of the projected variable X, line 2. How the system figures out the domain of the
variable will be discussed in section §11.7. During each iteration, the R-expr that
represents a rule is Simplified. The resulting value is directly saved directly into
the aggregator’s accumulator variable a, line 4.
For the second disjunct, we have multiple variables projected out, X, Y and

Z. The system loops through the domains of the first two variables on lines 5
and 6. Once it has enough information to evaluate an R-expr, it is immediately
evaluated, as on line 8. The remaining variables are still looped over (line 9) with the
remaining R-exprs also being evaluated (line 10). Just like before, the contribution
to aggregation is saved directly in the accumulator variable a (line 12).
Finally, a�er evaluating the entire body of the aggregator, the result of the

aggregation is returned (line 13).

To make the execution with R-exprs like what is shown in figure 11-16, we will

introduce two di�erent e�icient R-expr kinds. The first R-expr kind will be the

outer aggregator, which initializes the container for aggregation and returns the

final result of the aggregation. The outer aggregator corresponds with a term, and

will combines the result from multiple rules. This corresponds with the solid red

lines in figure 11-16 and is represented by lines 1 and 13. The second R-expr kind

199

a(Val) → (Val=sum_aggregator_outer(

sum_aggregator_inner([X], Inp, ▷List of projected variables and input variable
b(X, Inp))+ ▷Body of �rst inner aggregator

sum_aggregator_inner([X,Y,Z,Tmp1,Tmp2], Inp,

c(X,Y,Tmp1)*d(Y,Z,Tmp2)* ▷Body of second inner aggregator

times(Tmp1,Tmp2,Inp))))

Figure 11-17. The R-expr from figure 11-15 with its aggregator and projections
replaced with the e�icient aggregator.

will be the inner aggregator, which simultaneously handles projection and nested

loops over variables and will also compute the contribution to the aggregator. A

single outer aggregator can have multiple inner aggregators internally, as in this

example. The inner aggregator corresponds with a single rule, and terms can be

defined using multiple rules. The inner aggregators correspond with the dashed

blue lines in figure 11-16 with lines 2-4 and lines 5-12.

The R-expr representation for figure 11-15 with an e�icient aggregator is shown

in figure 11-17.

Note that in figure 11-16, the aggregator accumulator variable a is initialized by

the outer aggregator but used by the inner aggregator. The accumulator variable is

passed between the outer and inner aggregator through a “globally”162 accessible

pointer. Hence, the inner aggregator does not have well-defined R-expr semantics

on its own. Instead, the inner aggregator is only well defined when it is nested

inside an outer aggregator as in figure 11-17.

The implementation of the e�icient aggregator is similar to the e�icient disjunc-

tion. We define new R-expr kinds that hold the necessary details for the aggregator.

A rewrite rule that runs at construction matches the standard aggregator and

converts it into the e�icient representation (figures 11-18 and 11-19).

200

553 (def-base-rexpr aggregator-outer [:string operator185

554 :var result

555 :rexpr body])

556 (def-base-rexpr aggregator-inner [:hidden-var incoming

557 :hidden-var-list projected

558 :rexpr body])

559 (def-rewrite

560 :match (aggregator operator185 (:var result) (:var incoming)

561 (is-true? is-conjunctive) ;; Recall §6.5.1

562 (:rexpr body))

563 :run-at :construction

564 (make-aggregator-outer operator result

565 (make-aggregator-inner incoming [] body)))

Figure 11-18. Declaration of the outer and inner e�icient aggregator R-expr,
and rewrite rule which converts from the standard aggregator into the e�icient
aggregator.

The inner aggregator also uses several rewrite rules that match the body of the

inner aggregator to move the inner aggregator closer to the computation performed

by the R-expr. The inner and outer aggregators can be separated by disjunctions

and if-expressions (memoization). An inner aggregator nested under a disjunction

corresponds to a single Dyna rule that partially defines a user-defined term. An

example of rewrites that embed the inner aggregator is shown in figure 11-19.

When running the rewrites for the inner and outer aggregators, the outer ag-

185 In writing R-exprs, we have been writing aggregators as(A=sum(X,R)) where each aggregator
is its own R-expr kind. There is a single aggregator implementation in the implementation, with
di�erent aggregators being distinguished by their name, represented here as operator.
186There is a similar rewrite rule for aggregator-inner which matches against the e�icient

disjunct. The e�icient disjunct rule is a bit more complicated as it has to handle variables that are
assigned, as well as the fact that some of those variable assignments might be projected out by the
aggregator-inner.
187The delayed aggregator is an R-expr like

ResultVar=sum_aggregator_outer(R+sum_aggregator_inner([], Inp,

(Inp=accumulator))), where R is the partially rewri�en aggregator body as an R-expr.
188The + on line 604 corresponds with running the addition between the current aggregated value

and the value which has been computed from the inner aggregator. In the actual implementation,
this would consult the aggregator operator rather than being hardcoded for += as done here to
simplify this example.

201

566 (def-rewrite

567 :match (aggregator-inner (:var incoming) (:var-list projected)

568 (proj (:var projv) (:rexpr body)))

569 :run-at :construction

570 (make-aggregator-inner incoming (cons projv projected) body))

571 (def-rewrite

572 :match (aggregator-inner (:var incoming) (:var-list projected)

573 (disjunct Rs))186

574 :run-at :construction

575 (make-disjunct

576 (map (fn [R] (make-aggregator-inner incoming projected R))

577 Rs)))

Figure 11-19. The inner aggregator rewrites its body to embeds itself in the R-expr
as close as possible to the R-expr body which corresponds with a single Dyna rule.
It matches against projection (line 567) and merges those variables into the inner
aggregator’s own projected variable list. For disjunction, it moves towards the
leaves of the disjunct (line 572).

gregator sets up the aggregation accumulator where the intermediate result of

aggregation is stored. The inner aggregator is only responsible for handling a single

rule body. When the inner aggregator is completely rewri�en its body and added

its contribution to the outer aggregator’s accumulator, it will be rewri�en as 0.

Rewriting as 0 indicates that no delayed R-exprs still need to be evaluated.189 A

conceptual example of the rewrite rules that handle the inner and outer aggregator

is shown in figure 11-20.

In the next section, I will define iterators, which is how the “Domain(X, b(X))”

calls in figure 11-16 are implemented.

189 The outer aggregator will have a disjunction of multiple inner aggregators (which represent
each rule). The 0 is the identity element of disjunctions. This is conceptually similar to the unify
R-expr rewriting as 1 when its value has been saved in the context (figure 11-7). In that case, 1 is
the identity element of the conjunction that contains the unify R-expr.

202

578 (def-rewrite

579 :match (aggregator-outer operator result body)

580 (let [;; stash parent frame aggregation accumulator container

581 parent-accumulator (get-global *aggregator-accumulator*)]

582 ;; initialize aggregation container into global

583 (set-global *aggregator-accumulator* nil)

584 (let [new-body (simplify body) ;; run rewrites on body

585 accumulator (get-global *aggregator-accumulator*)]

586 ;; restore the parent frame aggregation accumulator into

global

587 (set-global *aggregator-accumulator* parent-accumulator)

588 (if (= new-body (make-multiplicity 0))

589 (do ;; done running the inner aggregators, return the value

590 (make-unify result (make-constant accumulator)))

591 (do ;; inner aggregators not finished, return delayed

592 (make-aggregator-outer187 operator result

593 (if (= nil accumulator)

594 new-body

595 (make-disjunct [new-body

596 (make-aggregator-inner (make-constant accumulator)

597 [] (make-multiplicity 1))]))))))))

598 (def-rewrite

599 ;; match R-expr like `sum_aggregator_inner([], Inp, (Inp=7))`

600 :match (aggregator-inner incoming []

601 (unify incoming (:ground value)))

602 (do

603 (set-global *aggregator-accumulator*

604 (+188 (get-global *aggregator-accumulator*)

605 (get-value value)))

606 (make-multiplicity 0)))

Figure 11-20. These example rewrites are only intended to be illustrative of how the inner
and outer aggregators work together. Many details have been omi�ed. There is a single
global *aggregator-accumulator* variable. This works fine, as the inner aggregator is
always associated with the nearest outer aggregator. The aggregator accumulator from a
higher scope is stashed in the local variable parent-accumulator as to not interfere with
the parent’s partially computed aggregation (line 581). Simplify is recursively called on
the body R-expr (line 584). When an inner aggregator has been completely rewri�en by
Simplify, the resulting contribution is added to the global accumulator variable (line 603).
The inner aggregator will rewrite itself as 0 (line 606). Here, rewriting as 0 indicates that
there are no delayed R-exprs, and that the result of the aggregation has been handled. This
is conceptually similar to when the unify R-expr rewrites as 1 once the assignment to a
variable is tracked via the context (figure 11-7).189

203

11.7 Iterators

In chapter §9, I defined the optional constraint R-expr, which li�s useful conjunc-

tions out of nested R-exprs. However, recall that optional constraints are only

used to license various rewrites that are useful for rearranging the R-expr into

something that can be rewri�en. Iterators, as described in this section, are an

implementation of optional constraints that work with variables that have a known

finite domain. For example, iterators correspond with optional constraints of the

form opt((X=1)+(X=2)+· · ·+(X=1000)), where this is a disjunction that represents

1000 di�erent assignments to the variable X. Iterators are more limited than the

optional constraints from chapter §9. However, by limiting iterators to only focus

on ground assignments to variables, we can build e�icient class abstractions and

implementations. For example, an iterator can be backed by the e�icient disjunctive

trie (section §11.6.1.2), in which case it will stream the values assigned to a variable,

as known by the trie. This is akin to having an iterator over the keys in a hash-table.

In addition to iterators having e�icient implementation, iterators allow us to

generate JIT-compiled code that is conceptually similar to the example code in

figure 11-16. This is tractable as iterators and assignments to variables can be

held in local variables of generated code at runtime, in the same way that is done

when writing a procedural program. Compilation of R-expr and will be discussed

extensively in chapter §12.

11.7.1 Iterator Interface

Every R-expr defines its own getIterables method. The getIterables returns

a set of IterablesWithMetadata that are supported by the R-expr (figure 11-21).

Calling getIterables on anR-expr R is equivalent to rewriting R as R*opt(· · ·)*opt(· · ·),

using the rewrites defined in chapter §9, where opt(· · ·) will represent a single

iterator. The getIterables method’s definition is informed by the R-expr’s be-

havior with respect to rewriting optional constraints. For example, the getIter-

ables on a conjunction simply returns the union of all iterables. This follows as

(R*opt(Ropt))*(S*opt(Sopt))→(R*S)*opt(Ropt)*opt(Sopt) is a valid rewrite which

simply rearrange optional constraints inside of the conjunction.

The iterator interface is designed to be roughly comparable to iterating over

204

607 interface IterableWithMetadata {

608 List<Variables> VariableOrder(); // order variables are assigned

609 Set<Variables> VariablesCanEnumerate(); // variables with finite domains

610 Iterator iterator(); // The iterator

611 }

612 interface Iterator {

613 LazySeq<IterInstance> Run(); // Run without duplication

614 LazySeq<IterInstance> RunNotFinite(); // Allow duplication

615 Iterator BindValue(Object value); // directly assign value, no iteration

616 int estimateCardinality(); // estimate of number of values returned

617 }

618 interface IterInstance {

619 Object value(); // Value assigned to the iterated variable

620 Iterator continuation(); // Iterator for next variable

621 }

622 interface LazySeq<IterInstance> { // LazySeq is provided by Clojure

623 IterInstance head(); // Return the current value

624 LazySeq<IterInstance> tail(); // Return tail, which contains next value

625 }

Figure 11-21. Java Interfaces for iterables and iterators.

tries,190 (figure 11-21). The IterableWithMetadata interface provides information

about which variables the iterable supports. When the iterable is started, using the

iteratormethod on line 610, the Iterator returned only iterates over the domain

of a single variable (line 612). This corresponds to iterating over all of the value

bindings to a variable at the first level of the trie. If we use the trie from figure 11-

13b as an example, the first iterator will iterate over the bindings for the variable X,

which are {?,1,3}. To obtain an iterator for a second variable, the continuation

method on line 620 is used. The second iterator is conditioned on the current value

returned by the first iterator. To continue using the trie from figure 11-13b as an

example, when the first iterator has X=3, the continuation iterator over Y will loop

over the values {4,9}, which correspond to the set of possible values that Y can be

assigned condition on (X=3) .

The order inwhich iterables loop over variables is indicated by the VariableOrder

190Such as the trie in section §11.6.1.2 figure 11-13.

205

method on line 608. The variable order typically corresponds to the order in which

variables appear on the underlying data structure (which is usually a trie). In the

case that the variable order supported by an IterableWithMetadata is not the

desired variable order, temporary materialized tables can be created to rearrange

iteration order of variables.

When using the iterator, we ideally want to only iterate over variables that have

a known finite domain. Recall that this corresponds to an optional constraint of

the form opt((X=1)+(X=2)+(X=3)). The VariablesCanEnumeratemethod (line 609)

returns the set of variables that have known finite domains. When a variable

does not have a finite domain, the corresponding optional constraint has the

form opt((X=1)+(X=2)+1), which is not useful for spli�ing an R-expr into smaller

non-overlapping R-exprs (previously discussed in section §9.2.2). When a variable

does not have a finite domain, the iterator interface still allows the variable to be

iterated. However, special care is required to handle the “FREE VALUE”, which will

be returned (indicating that any value is allowed to be assigned to the variable). For

the purposes of implementation, and in an a�empt to limit potential bugs, the Run

method on line 613 cannot be used when a variable does not have a finite domain.

Instead, a second method RunNotFinite on line 614 is used instead. Furthermore,

the Runmethod guarantees that a value will not be repeated, whereas no guarantee

is provided by the RunNotFinite method.

This design of iterating over a single variable at a time was chosen so that the

system can interleave rewriting with Simplify with iteration. This was hinted at in

figure 11-16, where some simplification on line 8 was performed before the variable

Z was iterated.

Finally, an iterator can also be used as a filters. This is done using the BindValue

method on line 615. The BindValue function allows us to avoid iterating through

the domain of a variable at a particular level of the trie and directly go to the next

variable. For example, if we have the R-expr (X=3)*R trie, we do not need to use Rtrie

to iterate over values of X. Furthermore, if Rtrie does not contain a branch for (X=3)

(meaning (X=3)*R trie→0), then BindValue will return null, which can be used for

filtering impossible values. Calling BindValue is generally more light weight than

rewriting the R-expr with Simplify. Hence, when we have a conjunction of multiple

iterators, the BindValue function can be used to filter out impossible values before

rewriting is even a�empted.

206

11.7.2 Di�erent Kinds of Iterators

Inside of the Dyna implementation, there are many di�erent classes that implement

iterators (figure 11-21 only shows interface). Some of these iterators come from

built-ins. For example, the integer range built-in’s iterator enumerates integers. In

this case, the iterator has its own class implementation, which e�iciently represents

the current integer as well as the min/max integer it is iterating to.

Outside of the built-ins, some core R-expr kinds also interact with the iterators.

For example, projection and aggregation will project out variables from an iterator

when the variable is projected out in the R-expr representation. In other words, if

we have an R-expr like in figure 11-22:

proj(X, (X=1)*((Y=1)+(Y=2)+(Y=3))+

(X=2)*((Y=7)+(Y=2))+

(X=3)*((Y=9)+(Y=1)))

Figure 11-22. Example R-expr with projection of X

When the system calls getIterables on the above R-expr in figure 11-22, it will

only get an iterable over the variable Y. This corresponds to the optional constraint

opt((Y=1)+(Y=2)+ (Y=3)+ (Y=7)+(Y=9)) pulled through the projection to the top of

the R-expr. This is handled by the implementation of getIterables for projection

and has wrapping iterable, and iterator classes that modify the iterables returned

from the body of the projection. The wrapping iterator will a�empt to stream the

iterated values of Y, instead of materializing the values of Y into a data structure.

11.7.3 Iterators A�empt to Stream Values

The intention of iterators is to be able to make use of the underlying data structures

without having to materialize everything as an R-expr. Much like streaming APIs

and libraries, the iterator module has a number of di�erent kinds of iterator types

that wrap an iterator and modify it as needed. As already discussed for figure 11-22,

the Dyna implementation has an iterator that will project out a variable from a

wrapped iterator. The wrapper modifies the return values from the VariableOrder

and VariablesCanEnumeratemethod from the IterableWithMetadata (figure 11-

207

21) such that the projected out variable is not visible outside of the projection. In

the case that an iterator’s variable order is “unfavorable” to the projection (such

as the variable order is [X,Y,Z] and we are projecting out the variable X), then the

wrapper will consolidate the values of Y,Z using a temporary data structure when

the Run method is invoked (line 613). Alternately, if the RunNotFinite method is

used, then no consolidation is required (line 614).

Conjunction of iterators

In some cases, we might want to combine two or more iterators on the same

variable. For example, with a conjunction of two iterators from di�erent sources,

we might use one of the iterators as a filter as in figure 11-23. Checking that an

iterator can bind to a particular value can be much faster than using Simplify to

rewrite the R-expr.

1: for ⟨x,continuation_1⟩ ∈ iterator_1.Run() :
2: if iterator_2.BindValue(x) ̸= null :
3: yield value x

Figure 11-23. Merging conjunctive iterators using iterator_2 to filter out values
which will not work (would cause the R-expr to rewrite as 0).

We can also use a conjunction of iterators in the case that we do not have a single

iterator that can iterate over all of the variables that we are interested in. In this

case, a second iterator can be used as in figure 11-24.

1: for ⟨x,continuation_1⟩ ∈ iterator_1.Run() :
2: if continuation_2 = iterator_2.BindValue(x) :
3: for ⟨y,_⟩ ∈ continuation_1.Run() :
4: for ⟨z,_⟩ ∈ continuation_2.Run() :
5: yield values x & y & z

Figure 11-24. If we have iterator_1 over X & Y, and iterator_2 over Y & Z, then
we can iterate over the variables X, Y & Z by combining these two iterators.

Disjunction of iterators

To handle a disjunction like

((X=1)+(X=2)+(X=3))+((X=1)+(X=7)+(X=11))

208

we can have iterators from each branch of the disjunction. These iterators can

be merged by first iterating through the domain of the first iterator and then

iterating through the domain of the second iterator, using the first iterator to filter

out values already seen. Assuming that the iterator e�iciently implements the

BindValue method, then this will be more e�icient than creating an intermediate

data structure for the values of X. This is shown in figure 11-25.

1: for X ∈ iterator_1.Run() :
2: yield value X

3: for X ∈ iterator_2.Run() :
4: if not iterator_1.BindValue(X) : ▷ Filter out values from iterator_1

5: yield value X

Figure 11-25. Iterating through a disjunction of iterator_1 and iterator_2.
The first iterator is used to filter out values of X that have already been seen on
line 4.

Note that the filtering in figure 11-25 corresponds to the more generally applica-

ble if-expression rewrite rule 72. In this case, given the constraint if(Q1+Q2,1,0)

(which can come from an optional constraint), is rewri�en as if(Q1+Q2,1,0)→if(Q1,1,0)

+ if(Q2,1,0)*if(Q1,0,1) , which shows that we can split the disjunctive constraint

(conditional of the if-expression) if we use if(Q1,0,1) to filter out redundant values.

11.7.4 Using Iterators

The iterator subsystem provides a run-iterators macro as an internal API that

automatically determines how to use the available iterables to subdivide the R-expr.

The run-iteratorsmacro takes a list of variables that the system wants grounded

(such as the list of projected variables in the case of aggregation), as well as a

set of iterables returned by the getIterables method. The run-iterators macro

automatically chooses which iterators to use. Run-iterators can either select a

single iterator or combine multiple iterators in the case where no single iterator will

work. When there are multiple iterators that can iterate the same variable,191 the

191For example, if we have((X=1)+(X=2))*((X=1)+(X=2)+(X=3)+(X=4)) , then the first iter-
ator iterates over {1,2} and reports an estimated carnality of 2, and the second iterator iterates
over {1,2,3,4} and reports an estimated carnality of 4.

209

run-iterators macro makes use of the estimateCardinality method (line 616)

to select the iterator that reports the smallest estimated cardinality. When there

does not exist an iterables that guarantees that some requested variable is grounded,

then run-iterators can a�empt a best e�ort iteration binding other variables. For

example, if run-iterators is requested to ground the variables X, Y, and Z, where

there only exists an iterator over Y and Z, the system is allowed to iterate over Y

and Z in hopes there is a constraint like plus(X,Y,Z) contained in the R-expr that

is capable of determining the value of X from an assignment to Y and Z.

11.7.5 E�icient Aggregation uses Iterators

In figure 11-16, the aggregator makes use of a function of the form Domain(X, b(X))

to loop over the domain of a variable. This comes from the iterator subsystem and is

the run-iterators macro in the implementation. When run-iterators chooses

the order in which variables will be bound, it is informed by the iterators available.

(The iterator’s variable order is informed by the order in the data structure’s store

data, such as in the trie.)

When a variable X’s value is assigned, the aggregator will rewrite the R-expr

using the information (X=x). If the R-expr is rewri�en as 0, then this means that

the current assignments of variables are inconsistent with the R-expr, and the

aggregator will skip the value x and try the next possible assignment to X without

having run more deeply nested loops over variables. A�empting to rewrite the

R-expr before all variables have been bound is akin to the optimization of li�ing

operations outside of loops or propagating new bindings to variables once available

in constraint logic programming through the constraint store.

The inner aggregator is responsible for performing the aggregation inside of the

loop once all variables have been bound and the R-expr is completely rewri�en. If

the R-expr body of the aggregator is not rewri�en completely, then the partially

rewri�en R-expr is preserved by the aggregator in the hope of being rewri�en later.

210

Chapter 12

Compilation of R-expr
Rewrite Strategies

One unfortunate thing about research sometimes is that despite making significant

progress, we can still find ourselves with an unsatisfactory system. In this case,

the realistic implementation described in chapter §11 is easily 100 to 1000 times

faster192 than the pure, minimal implementation presented in chapter §8. However,

despite that, the “realistic implementation” is still too slow for the use cases that we

care about.193

In hindsight, this is not terribly surprising. We can think of the R-expr as

akin to an internal representation inside a compiler. Our rewrites are, therefore,

akin to optimization passes. For example, a rewrite like 28, plus(1,2,X)→(X=3) is

essentially constant propagation. Unsurprisingly, an optimizing compiler being

used to evaluate the entire program is much slower than the equivalent procedural

instructions.

192This observation was made on Python prototypes of term-rewriting. The code at https:
//github.com/argolab/dyna-R/blob/backend-v2/dyna_match_paper/rexprs.py a�empts to
be a pure term rewriting-based system that closely matches chapter §8. https://github.com/
argolab/dyna-R was a prototype of the R-expr based system described in chapter §11, although
it lacks several features added in the implementation for this dissertation: https://github.com/
argolab/dyna3.
193I note that the e�icient disjunctions are asymptotically ine�icient in some query modes. This

asymptotic ine�iciency was accounted for when making the judgment call to prioritize the work in
this chapter over adding indices to the tries.

211

https://github.com/argolab/dyna-R/blob/backend-v2/dyna_match_paper/rexprs.py
https://github.com/argolab/dyna-R/blob/backend-v2/dyna_match_paper/rexprs.py
https://github.com/argolab/dyna-R
https://github.com/argolab/dyna-R
https://github.com/argolab/dyna3
https://github.com/argolab/dyna3

626 a = b * c

(a) Python

LOAD_GLOBAL 0 (b)

LOAD_GLOBAL 2 (c)

BINARY_OP 5 (*)

STORE_FAST 0 (a)

(b) Python Bytecode

Figure 12-1. Example Python with procedural instructions

As such, in this chapter, I will discuss my e�orts to compile R-expr rewriting.

When rewriting R-exprs that come from Dyna programs, there will be many similar

R-expr “shapes” and sequences of rewrites performed. Hence, it is reasonable

to believe that we can speed up the Dyna implementation by compiling R-expr

rewrites.

The goal of our implementation is to maintain the flexibility of R-exprs while

running faster. The work presented here focuses on removing the overhead of the

rewrite system and is not a “final stage” compiler. Instead, our goal is to generate

procedural code instead of individual rewrites that should be comparable to what

a user would write in a procedural language.194 Before we start looking at how we

generate code, let us briefly discuss what some of the overheads are that we are

aiming to eliminate.

12.1 What is Overhead?

Let us start by defining what “overhead” means in the context of R-exprs and

executing Dyna programs. Consider the line of code in a procedural programming

language in figure 12-1a. To evaluate figure 12-1, we are reading from two variables

and calling the multiplication operation. If this was converted into e�icient assem-

bly instructions, we might have two read-from-memory-into-register instructions,

followed by a multiplication instruction and then a final store instruction. These

four instructions in figure 12-1b represent the required operations to evaluate this

line of code.

194Our compilation targets Clojure, which is compiled into Java bytecode and eventually machine
code by the Java virtual machine (JVM).

212

Now, suppose that all variables are stored in a hash-map. Instead of performing

a single read to load the variable, the system indirects through multiple operations

performed by the hash-map: reading the base pointer of the hash-map, computing

the hash code of the string “b”, reading the size of the hash-map, computing the

hash("b") mod the size of the hash-map, reading an entry in an array, checking

equality between the string “b” and the entry found in the array. In this case, every

operation the hash-map performs can be considered overhead. Now, overhead does

not mean wasted. In this case, using a hash-map makes Python’s implementa-

tion simpler. However, it does not contribute to the “useful work” of multiplying

numbers.

12.1.1 Overhead with R-exprs Rewriting

When running a Dyna program represented as R-exprs, there are similarly some

operations that correspond to manipulations of the data that we are interested

in and other operations that correspond to the overhead of R-exprs. For example,

some overheads we have with R-exprs are:

1. Manipulations and accesses of the context C. The context contains both

variable bindings and other conjunctive R-exprs. The assignments to variables

are stored in a hash-map.195 This means that matching the :free and :ground

preconditions requires accessing the context’s hash-map. Similarly, when

the context is used to find conjunctive R-exprs, those R-exprs are stored in

sets. Finding the right conjunctive R-expr requires searching through any

relevant set. Additionally, conjunctive R-exprs are added to these sets when

encountered.

2. To identify a rewrite, the system checks a list of potential rewrites.196 Rewrites

are segmented by the kind of R-expr, but operations such as checking the

ground/free state of variables use the context. Conjunctive R-exprs require

scanning through the context.

195Variable identifiers are generic objects. Converting all variables to small integers that could be
used as array indices is non-trivial because R-expr objects are immutable and reused in multiple
places.
196Recall that the pseudocode in section §8.A first matched against the type of the R-expr, and

then checked each individual rewrite to see if any could apply.

213

Figure 12-2. This is a flame graph for CKY parsing using memoization and forward chaining of a small sentence
without using the compiler. From this graph, we can observe which functions take the most time to run. We can
observe two operations used by memoization (chapter §10): sending messages for updates and recomputation
of values. Both of these operations use Simplify to rewrite specially cra�ed R-exprs to perform the bulk of the
work. We can observe that the R-expr rewriting occupies 98% of the runtime.

21
4

3. The results of rewrites are either R-exprs or assignments to variables that are

tracked by modifying the context (such as in figure 11-6). In both cases, this

means creating many new Java objects.

4. Variable renaming and other similar manipulations of R-exprs require scanning

the entire R-expr to perform the necessary rewrites. A new R-expr is created

and returned.

5. Finding iterators is a recursive function that returns a set of iterators. This

creates many intermediate sets and iterator types. This happens every time

we evaluate any disjunction under an aggregation.

6. Memoization and update messages are handled via a priority queue.197 There-

fore, the push and pop operations take O(logn) time where n is the number

of updates messages pending. Comparably, a dynamic program with a fixed

execution order does not require an agenda at all and entirely avoids this

overhead.198

This is not intended as an exhaustive list of the sources of overhead. Furthermore,

not all cases of overhead are “bad” or something we need to deal with. For example,

if we allocate and deallocate a Java object within the same compilation unit, then

the Java compiler can eliminate the allocation altogether. Unfortunately, given the

design of Simplify from chapter §11, this optimization is unlikely to happen, as

compilation units are likely only able to get as large as a single rewrite rule.

12.2 Compilation Overview

In the remainder of this chapter, I will detail how we compile R-exprs and their

rewrites.

Our goal in compiling is to make the rewriting R-exprs run faster. To make

compilation work, we need compilable units and reentrancy so that the compiled

units are reused. The most obvious approach would be to compile the Simplify

197$priority returns a floating point value that is used to sort update messages (section §10.8.5).
198Admi�edly, this is not addressed by JIT compilation in this dissertation, though future work

should consider looking into this problem. Section §16.6

215

function, which is similar to a bytecode interpreter whereR-exprs are the “bytecode”.

However, this has the same problems we had with memoization (section §10.2).

It requires matching against a large part of the R-expr to figure out when there

is reentrancy. Instead, we will take an approach similar to the one taken with

memoization. We will replace a sub-R-expr with a JIT-generated R-expr kind that

represents a compiled unit, such as in figure 12-3.

Generated R-exprs and generated R-expr rewrites will be generated using a just-

in-time compiler (JIT) and are made up of multiple primitive R-exprs and R-expr

rewrites (the R-exprs and rewrites defined previously in chapters 5 and 6).

As we will see, our approach can be broken down into these two major compo-

nents, which work in tandem:

1. Generating new JIT-generated R-expr kinds, which represent larger R-expr

expressions state. These JIT-generated R-exprs correspond to compilable units

of code. This allows us to match with a larger R-expr unit all at once. Therefore,

we can save time by not having to match each R-expr individually. When a

particular R-expr state is reencountered, we will reuse the generated R-expr

kind, enabling reentrancy (section §12.4.2).

2. Generating rewrites for the JIT-generated R-expr kinds. The R-expr kind on its

own does not represent execution but rather a state of the program. Hence, we

need to generate rewrites for the new R-expr kinds. These rewrites correspond

with multiple primitive rewrites being performed against the underlying R-expr

state. Performing a single match allows us to avoid the overhead of performing

eachmatch individually and serializing the state as an R-expr between rewrites.

12.3 Generating New JITted R-expr Kinds

The mechanism for generating a new R-expr kind is conceptually straightforward.

Every JIT-generatedR-expr kind is given a name like state1234,199 and corresponds

to some primitive R-expr state, which is tracked via external metadata. Primitive

R-expr kinds are those previously defined in chapter §5. The generated R-expr

199Names are generated randomly using the gensymmethod in Clojure, which generates a unique
name using a global counter.

216

will have holes corresponding to variables and R-exprs not statically knowable.

For example, exposed variables that are referenced by other R-exprs may have

di�erent names in di�erent contexts. Therefore, the generated R-expr will have a

hole representing a variable. Variables that are only used internally and projected

out do not require a hole in the JITted R-expr because they only represent internal

data. For example, the variable X in proj(X, times(X,Y,Z)*· · ·) is only used locally,

but the variables Y and Z are in the externally visible vars(·) of this expression,

therefore, will be represented with holes.

Holes are typed as we saw in section §11.5.1, and can include sub-R-exprs, value

types, and hidden variables.200 This is very important as it allows a generated

R-expr to represent part of a larger R-expr and does not require that the entire

R-expr is represented at the same time. In other words, if we think of an R-expr as

a recursive tree data structure, then the generated R-expr is allowed to represent

a sub-tree all the way down to the leaves, and it is also allowed to represent a

sub-tree that stops before it gets all the way to a leaf. This allows us to 1) create

smaller JIT-generated units that are more likely to be reusable and 2) we can exclude

R-exprs that we do not want to support in the JIT (I will revisit this point in section

§12.5).

An example of creating a JIT-generated R-expr is shown in figure 12-3.

12.4 Generating New Rewrites

The second part of JIT-compiling anR-expr is to generate the corresponding rewrites.

The high-level approach is inspired by tracing JIT compilers ([31, 74, 75], section

§3.6). A tracing JIT works by compiling a trace of operations that are performed

rather than generating using the definition of a particular method. In the case of

rewriting, a trace will correspond to a sequence of one or more rewrites applied to

the state represented by the JIT-generated R-expr.

To identify which rewrites can be applied, the JIT uses the same information

that Simplify uses to match a rewrite. This includes the context C, which contains

information about conjunctive R-exprs and the values assigned to the variables.

To gain access to the context, we invoke the JIT-compiler from Simplify. In other

200Hidden variables are how variables on projection are annotated, section §11.5.1.

217

User’s Program

627 f(X,Y) = 3*X + g(Y).

Root R-expr for f/2
f(X,Y,Result)

proj(Temp1,·)

proj(Temp2,·)

*(·,·,·)

times(3,X,Temp1)

g(Y,Temp2)

plus(Temp1,Temp2,Result)

JITted Root R-expr for f/2
f(X,Y,Result)

state687(X,Result,Temp2,·)

g(Y,Temp2)

AS
T
to
R
-e
xp
rs

Sy
nt
he
siz
e
ne
w

st
at
e
#6
87

R
-e
xp
rs

Co
m
bi
ne
d

H
ol
es
ar
e i
nt
ro
du
ce
d
fo
r R
-e
xp
rs

w
hi
ch
ar
e n
ot
in
clu
de
d
in
th
e s
ta
te

Figure 12-3. This figure shows the first step in JIT compiling an R-expr. The center-dot (·) represents a pointer to another R-expr.
We identify a subset of an R-expr (represented by the red dashed box in the middle) that we want to compile into a single state. The
selected R-expr does not have to include all children R-exprs, as represented by ‘g(Y,Temp2)’, which is not included in state687.
This allows us to avoid including parts of the R-expr that are unlikely to benefit from being compiled into the state. Variables such as
X,Result are referenced by the external environment, and the variable Temp2 is hidden and referenced by the R-expr in the hole.
Variables that are only internal, such as Temp1, do not have variable slots to track their name.

21
8

words, when Simplify encounters a JIT R-expr kind that does not have a generated

rewrite,201 it invokes the JIT compiler with the R-expr and the current context. The

process of creating JIT-generated rewrites therefore happens lazily—as is typically

done when JIT compiling a program.

Any rewrite generated by the JIT compiler is immediately applied to the R-expr,

in the usual way that Simplify applies rewrites to R-exprs. However, the newly

generated rewrite will also be added to the collection of available rewrites that

the system has. This means that the same rewrite can be applied in the future

without requiring additional code generation. An example of this is shown in

figure 12-4 with a rewrite being generated for the R-expr from figure 12-3 and

applied immediately.

12.4.1 Combing Multiple Rewrites Into One

One of the core features of the JITted rewrites is that we can combine multiple steps

of rewriting together into a single JIT-generated rewrite. This limits the overhead

of matching and allows us to pass values between primitive rewrites using local

variables.

The way the JIT compiler generates rewrites di�ers from what we have seen with

the primitive rewrites from chapter §11. First, with the primitive rewrites, there

is a single :match statement (section §11.5.3). The match statement is matched

in full before the rewrite is applied. If we were to apply this same design to the

JIT-generated rewrites, then we would end up with rewrite rules that are not widely

applicable, as it would require matching all of the preconditions before anything

can be rewri�en. For example, suppose that we combine a sequence of 20 rewrite

rules together. If we have to match against all 20 di�erent conditions first, then it is

likely that one of the rewrite’s preconditions will not match, and the JIT-generated

rewrite will get poor reuse.

To get around this issue, we alternate between checking preconditions and

performing rewrites. A rewrite’s preconditions are checked right before the rewrite

201This means that there are zero rewrites for a given R-expr kind. Not that there is no rewrite
that can be applied. If there is a rewrite whose preconditions are not satisfied, then this will not
invoke the JIT compiler. To allow JIT R-expr kinds to have more than one rewrite, the JIT compiler
is still invoked with a low priority if there are no other rewrites that can be found to rewrite the top
level R-expr.

219

*(·,·)

X=7

state687(X,Result,Temp2, ·)

g(Y,Temp2)

*(·,·)

X=7

state865(21,Result,Temp2, ·)

g(Y,Temp2)

JIT Rewrite #456

Compute times(3,X,Temp1)

Figure 12-4. A new JIT rewrite is generated for state687(· · ·) from figure 12-3. The JIT is invoked by the
Simplify method, which recursively walks the R-expr tree. When the JIT is invoked by Simplify, it has access to
the current R-expr state687(· · ·) and the context C. Hence, the JIT can see that X is assigned the value (X=7) .
The JIT looks for rewrites that can be applied to the “primitive R-expr state” represented by state687(· · ·). In
this case, the only rewrite that can be applied is to rewrite times(3,X,Temp1).

Observe that the result of this rewrite, state865(· · ·), no longer has a reference to the variable X. The reason
is that there are no R-exprs in state865(· · ·) that still refer to the variable X. Furthermore, we previously had
that Temp1 was a hidden variable (due to the projection), but now that it has a known value that is not statically
knowable, that value needs to be saved somewhere. Therefore, state865(· · ·) has an argument (hole) for the
value assigned to Temp1, in this case that value is 21.

22
0

state10(· · ·)

(Initial state)

state72(· · ·)

(Goal state)

(4 rewrites
completed)

state32(· · ·) state41(· · ·) state88(· · ·)

(“Fail” state
1 rewrite
completed)

(“Fail” state
2 rewrites
completed)

(“Fail” state
3 rewrites
completed)

Pr
ec
on
di
tio
n
te
st
#1

Pr
ec
on
di
tio
n
te
st
#2

(0 rewrites completed)

Re
w
rit
e
#1

Pr
ec
on
di
tio
n
te
st
#3

Pr
ec
on
di
tio
n
te
st
#4

Re
w
rit
e
#2

Pr
ec
on
di
tio
n
te
st
#5

St
at
ica
lly
kn
ow
n
pr
ec
on
di
tio
n
(n
o
te
st
)

Re
w
rit
e
#3

St
at
ica
lly
kn
ow
n
pr
ec
on
di
tio
n
(n
o
te
st
)

Pr
ec
on
di
tio
n
te
st
#6

St
at
ica
lly
kn
ow
n
pr
ec
on
di
tio
n
(n
o
te
st
)

Re
w
rit
e
#4

Gener
ated JIT Rewri

te

Figure 12-5. This represents a single rewrite. The blue arrow in the middle is the trace of 4 di�erent rewrites.
The trace will include all possible rewrites from the time of compilation, starting from the initial state. The
preconditions or match statements for a rewrite are represented as red lines and are checked before the rewrite
is applied. If a precondition fails, then it takes branches to a generated R-expr state. JIT-generated R-expr states
such as states 32, 41, 88, and 72 are generated on demand at the same time that the rewrite was generated. If
an existing state matches, then it will be reused rather than generating a new state. Preconditions that can be
statically resolved to be true, either because they were already checked by another rewrite or because they
consume statically known output from an earlier rewrite, do not generate any code in the generated rewrite
(represented in gray).

221

is applied. If one of the rewrite’s preconditions has been previously checked or can

be statically determined, then it is not rechecked, and no code is generated for the

precondition check, as is shown in figure 12-5.

12.4.1.1 What Happens If Only Some Rewrites Match?

Interlacing the checking of rewrite preconditions and applying rewrites means that

we can end up in a scenario where only some of the rewrites have been applied. In

this case, we need to generate code to handle the failed match. To accomplish this,

we take inspiration from tracing. In tracing, when there is a conditional branch, a

check is inserted to check that the branch goes the same way as when the JITted

code was originally generated. If the conditional test branches the other way, the

JITted code falls back to the new code and only then will generate the code under

that branch [31, 74, 75]. An example of this was shown in the related work chapter

with a small procedural program in section §3.6.

Adapting this idea to R-exprs, we can observe that when a precondition fails

to match, we need to represent the state of the primitive R-expr (that is being

“conceptually” rewri�en) at this point. Furthermore, we want to avoid generating

all possible rewrites of what can happen upfront (e.g. generating a sequence of 20

rewrites without knowing that it can be used at least once is unproductive). First,

to represent the state, we can use the generate-a-new-R-expr mechanism from

section §12.3. An example of a single rewrite that interlaces checks and rewriting is

shown in figure 12-5.

To complete the analogy to tracing, we need to generate code for branches that

were previously not taken. Recall from section §12.4, I mentioned that when a

JIT-generated R-expr is Simplified for the first time, we will a�empt to generate

a new rewrite. This new rewrite corresponds to generating the code for a branch

that was not previously encountered when running. The end result of generating

new R-expr kinds and generating rewrites for those R-exprs is a “flow graph” that

intermixes R-expr states as nodes with rewrites as transitions. This is shown in

figure 12-6.

222

state10(· · ·)

(Initial state)

state72(· · ·)

Rewritestate77(· · ·)

Rewri
te

state32(· · ·)

Chec
k fai

led

state41(· · ·)

state89(· · ·)

Re
wr
ite

state22(· · ·)

Re
wr
ite

state24(· · ·)

Figure 12-6. An example graph of JIT states and rewrites which go between the
states. Rewrites are shown in blue and always start at an R-expr state. A rewrite
can go to di�erent R-expr states depending on how many primitive rewrites match.
If a precondition fails, then it takes one of the red edges and immediately jumps to
a JIT-generated R-expr kind. These failure edges always start from a rewrite and
go directly to a state that represents the R-expr at this point. The JIT-generated
R-expr states are reentrant (e.g. states 32 and 22) in the case the same state is
encountered multiple times.

12.4.2 How to Reenter JITted R-exprs

The generated R-expr kinds represent the state of the program when we are rewrit-

ing. Hence, reusing a JIT state is how we get reentrancy into compiled code (as in

figure 12-6).

To implement reuse of JIT-generated R-expr kinds, whenever we are tasked with

generating a new JIT-generated R-expr kind, we first check through the previously

generated R-expr kinds and see if there is anything applicable.

To check for equivalent JIT states, there are a few things that we need to handle.

Namely, there are parts of the R-expr that we do not care about. First, di�erent

variable names can be used in equivalent R-exprs. Because we are tracking the

variable names using holes when a variable is renamed, this just results in a di�erent

223

variable name being placed into the hole. Second, some R-exprs can be rearranged.

For example, conjunctions are associative and commutative, so R*S and S*R are

equivalent.

As a more concrete example, the following two R-exprs are equivalent:

lessthan(A,B)*lessthan(A,C)*lessthan(C,D)*lessthan(A,E)

lessthan(X4,X0)*lessthan(X2,X4)*lessthan(X2,X1)*lessthan(X2,X7)

Figure 12-7. Equivalent R-exprs with di�erent variables and ordering202

Checking for equivalent states uses a more relaxed definition of equality com-

pared to what is used by Simplify from chapters 8 and 11. The first step is to

identify a set of potential JIT states by computing a JIT state-specific hash-code.

The hash-code ignores the value types (variables names and constants values) in

the R-expr and the order that sub-R-exprs are in associative and commutative

R-exprs. The hash-code also ignores R-exprs kinds that will likely be holes in the

JIT-generated state (section §12.5). The implementation of this is done by having

a second hashCode method call jitHashCode on all R-expr kinds. Using the JIT’s

hash-code, the system will quickly identifies a small set of potential JIT-generated

R-expr kinds to consider.

Once we have identified a set of possible JIT R-expr kinds into which an R-expr

can be converted, we need to identify if there is a way that an existing generated

R-expr kind can be equivalent to the R-expr state that the rewrite is a�empting

to serialize (during the compilation of a rewrite). This is implemented using a

Prolog-style backtracking and unification, which searches through di�erent ways

in which the holes on the JIT-generated R-expr kind can be filled in such that the

JIT-generated state is equivalent to the R-expr being converted to a JIT state.

12.4.3 Abstract Evaluation of Primitive Rewrites

So far, I have only talked abstractly about “finding primitive rewrites that can be

applied”, and “checking preconditions”. While this description is the high-level idea

202A=X2, B=X7, E=X1, C=X4, D=X0.

224

of the JIT compiler, this level of detail does leave a large glaring hole that needs to

be addressed, in how the rewrites are actually generated.

When the JIT compiler is called from Simplify, it has access to the current JIT-

generated R-expr state, the corresponding primitive R-expr that state represents,

context C, and the Clojure source code for all primitive rewrites from chapter §6 that

were defined using the def-rewrite macro (section §11.5.3). To merge rewrites

and speed up the rewrites themselves, we use partial evaluation to convert the

Clojure source code that defines a rewrite into a format that can be manipulated

inside of the JIT compiler.

Partial evaluation has been well studied in the JIT compilation literature [42,

57, 73, 116, 149]. Partial evaluation is a process in which we evaluate the program

before we know all the information, which will only happen when it is running.

For example, if we have the expression 1+ 2+ x, we can partially evaluate this

expression into 3+ x. The information about 1 and 2 was su�icient to determine

the result of +. Conceptually, this is very similar to what we have already been

doing with R-exprs, in that we allow R-expr to be partially rewri�en when there is

insu�icient information to completely rewrite the R-expr. The di�erence this time

is that we are partially evaluating Clojure code instead of R-exprs.

To implement partial evaluation rewrites defined as Clojure code, we have a

partial-evaluate function that takes as arguments a Clojure expression repre-

sented as an AST (which is a recursive list data structure as is typical of LISP-like

languages) and the information that is globally accessible to the rewrite, such

as the context C. The Clojure source code that partial-evaluate is passed as

an argument is from a single primitive rewrite defined using the def-rewrite

macro.203 The partial-evaluate function returns a data structure that includes

any statically knowable values, the current value conditioned on the current context

C, and statically known type information. The exact information returned varies

by the value’s type that the Clojure expression returns, as will be described shortly.

Currently, in our JIT compiler, we only distinguish between a few types that are

useful for compiling R-expr rewrites. These types are: R-exprs, an array of R-exprs,

value types (variables or constants), an array of value types, “primitive” value (any

ground value such as integers or strings contained in G, but also any Java value,

203Recall that last argument to def-rewrite is a Clojure expression that when evaluates returns
an R-expr or value depending on the keyword arguments passed to def-rewrite.

225

some of which may not be contained in G), and function types that are callable. The

partial-evaluate function does not distinguish the type of a “primitive” value,

such as floating point vs integers. This would typically be necessary when doing

low-level code generation. However, this is not a problem for us, as we are not

directly generating a low-level representation but instead generating Clojure, which

is su�iciently high-level and does not require this level of detail.

When partial-evaluate evaluates an expression that returns either a primitive

value type (like an int or string), or a R-expr value type (a constant or variable),

the partial-evaluate function returns the currently known value, with respect

to the context C that the rewrite is being generated for, and an optional statically

known value. It also returns a fragment of Clojure code that can be embedded in

the generated rewrite to access the value at runtime.

Functions such as ‘get-value’ and ‘is-ground?’ receive special handling in

the JIT-compiler. These functions cache their returned value in a local variable in

the generated rewrite. This means that if a rewrite performs (get-value X) twice

on the same variable, the second time, the generated code will return the local

variable instead of calling (get-value X) in the generated rewrite. This is useful,

as when generating the code for multiple rewrites sequentially, there are o�en

multiple calls to get-value for the exact same variable.

The way partial-evaluate handles R-expr typed variables and functions that

return R-exprs is a bit more interesting. R-expr typed variables are tracked statically

and have no runtime representation.204 For example, in figure 12-5, as the rewrite

progresses from the initial state on the le� to the final state on the right, there

are no R-exprs objects serialized inside of the rewrite. This means that if we

write (make-lessthan A B (make-constant true))205 in the def-rewrite for

a rewrite rule, the R-expr is only tracked statically and there is no corresponding

code in the generated rewrite that needs to be executed at runtime. To make this

work, we must slightly expand the R-expr representations with additional classes.

Namely, we define new value types206 to allow general Clojure expressions and

204
R-exprs that are contained in holes will have a variable which is treated as an opaque pointer

to an R-expr.
205For example, the function make-lessthan is used by rewrite rule 34 and in the def-rewrite

example figure 11-8.
206The “value type” is a Java interface that is implemented by both constants and variables. Here,

we are simply defining new classes that also implement the value type interface.

226

variable names that are local to the rewrite in addition to the named variables,

which are looked up in the context C, and constants. These new value types are

only allowed within a single compilation unit that will generate a single rewrite.

Therefore, when the R-expr state is serialized into a JIT-generated R-expr type, these

new value types are saved into a hole for future use. For example, in figure 12-4,

the number 21 on state865(· · ·) would have been held in a local variable that was

referenced by the R-expr state. Therefore, the value 21 is saved in the JIT-generated

R-expr kind so that the remaining R-exprs can still refer to the value 21.

This design of not representing R-exprs in the compiled code was inspired by the

Tru�le project [149]207 which is a framework for making JIT compilers by defining

an AST interpreter. The AST is represented using standard Java objects. When

the AST is compiled, the AST does not have a representation in the generated

code outside of the program counter, just like we are doing with the R-expr typed

variables.

12.4.4 Structure of Generated Rewrites

The way in which the generated code is structured is heavily influenced by the

fact that we are generating Clojure code, which is translated into Java bytecode.209

This means that we cannot generate JUMP instructions in the code. Instead, we

use Java exceptions and try/catch blocks to emulate JUMPS. These operations can

be converted into JUMP instructions when translated into machine code by the

Java Virtual Machine (JVM). A conceptual example of this is shown in figure 12-8

with a rewrite actually generated by the JIT compiler shown in figure 12-9.

12.4.5 Generating Aggregators in the JIT-Generated Rewrites

So far, the generated operations that we have talked about have only been about

generating straight-line code that corresponds to a sequence of rewrites performed

against an R-expr. As discussed previously in sections § 6.5 and 11.6.3, aggregation

requires combining the results of multiple contributions. This requires spli�ing the

207The Tru�le project is built on and closely integrated with the Graal compiler [56, 57].
208Some manual cleanup has been done to make the code presentable.
209Even if we generated Java bytecode directly, there are limitations on the JUMP instructions

that can be generated, which is enforced by the Java Virtual Machine.

227

1: try:
2: if not check(· · ·) : ▷ Check precondition 1 for first rewrite

3: throw CheckFailure ▷ throw/catch can be converted to JUMPs by the Java VM

4: if not check(· · ·) : ▷ Check precondition 2 for first rewrite

5: throw CheckFailure
6:

...
...

... ▷ More preconditions checked (omi�ed)

7: ▷ Do Rewrite once all preconditions are checked

8: local_y← getValue(Y) ▷ Values assigned to variables are cached into local variables

9: local_z← getValue(Z)
10: local_x← local_y + local_z ▷ Only the “work” of the rewrite is generated

11: try: ▷ Start Second rewrite

12:
...

...
... ▷ Second rewrite’s body omi�ed

13: catch CheckFailure: ▷ JUMP target for failed matches of second rewrite

14: ▷ Local variables used by state731 are passed as arguments

15: return state731(· · ·, local_x, local_z, · · ·)

16: catch CheckFailure: ▷ JUMP target for failed matches of first rewrite

17: return null ▷ Return null to indicate that no rewrite were performed

Figure 12-8. High-level example of how generated code nests try/catch blocks to
represent each rewrite. The catch blocks are the JUMP targets for when the match
fails. Subsequent rewrites become more deeply nested under the try blocks.

228

628 (fn [rexpr simplify] ; Rewrite function takes R-expr & active simplify func

629 (StatusCounters/match_attempt)

630 (let [**context** (ContextHandle/get)

631 **threadvar** (ThreadVar/get)]

632 (try

633 (do ; rewrites that modify the R-expr may not generate operations

634 (try

635 (try

636 (do ; status counter incremented after 1 rewrite is done. performing a

637 ; rewrite does not have "code" sometimes (e.g. rearranging R-expr)

638 (StatusCounters/jit_rewrite_performed)

639 (try

640 (do ; perform a test, otherwise throw JITRuntimeCheckFailed

641 (jit-precondition-to-check (is-bound-in-context? (. rexpr jv23463)

context))

642 (do

643 (jit-precondition-to-check

644 (let* []

645 (jit-precondition-to-check (is-variable? (. rexpr jv23461)))

646 (not (is-bound-in-context? (. rexpr jv23461) **context**))))

647 (let* [local-cache23852 (get-value-in-context (. rexpr jv23463) **

context**)]

648 (do (set-value-in-context! (. rexpr jv23461) **context**

local-cache23852)

649 (try

650 (try

651 (try

652 ; the final returned R-expr

653 (make-jit-rexpr24202 (. rexpr jv23462) (make-constant

local-cache23852) (. rexpr jv23464))

654 (catch JITRuntimeCheckFailed _

655 ; Failure branch, return a different R-expr

656 (simplify (make-jit-rexpr24046 (. rexpr jv23462) (

make-constant local-cache23852) (. rexpr jv23464)))))

657 (catch UnificationFailure _

658 ; due to disjunctions, a unification failure might not result in 0

659 ; so we catch this exception is handle explicitly instead of bubbling

660 (make-multiplicity 0)))

661 (catch JITRuntimeCheckFailed _

662 ; Second failure branch, returns another different R-expr

663 (simplify (make-jit-rexpr23857 (. rexpr jv23464) (

make-constant local-cache23852) (. rexpr jv23462)))))))))

664 (catch UnificationFailure _

665 (make-multiplicity 0))))

666 (catch JITRuntimeCheckFailed _

667 (simplify (make-jit-rexpr23624 (. rexpr jv23462) (. rexpr jv23461) (.

rexpr jv23463) (. rexpr jv23464)))))

668 (catch UnificationFailure _ (make-multiplicity 0))))

669 ; the highest level runtime check returns nil to indicate no change/rewrites

670 (catch JITRuntimeCheckFailed _ nil))))

Figure 12-9. Example generated Rewrite from JIT compiler.208

229

R-expr into smaller disjunctive R-exprs, which can each be processed individually.

This is done through the use of iterators, which are designed to loop over the

domain of a variable (section §11.7). By having iterators split the R-expr using

assignments to variables, rather than returning arbitrary R-exprs, we can easily

represent this as a new JIT-generated state (line 8 of figure 12-10). The current

value of a variable can be stored with a local variable at runtime. Conversely, an

arbitrary R-expr cannot be e�iciently represented at runtime given the design of

the JIT compiler.

When ge�ing iterators from an R-expr, we create a precondition on finding an

iterator that behaves the way that we need when considering the code that we

have generated in the rewrite (lines 3 to 6 of figure 12-10). In the event that we

cannot find an iterator that can support our compiled subroutine, the rewrite will

be aborted with a precondition failure, just like in section §12.4.4 (line 6 of figure 12-

10). To implement this behavior inside of the JIT-compiler, there is special code for

handing rewrites on the e�icient inner and outer aggregator kinds (section §11.6.3),

and the primitive rewrites for aggregation are not at all used by the JIT-compiler.

To accumulate the aggregated values, we use a globally accessible container that

holds the current aggregated value. This is the same as was done in section §11.6.3

figure 11-20.

A conceptual example of an aggregator in a JIT-generated rewrite is shown in

figure 12-10.

12.5 What is JITable?

Most of the primitive R-expr kinds can be included in a JIT-generated R-expr state,

however there are some R-exprs that we exclude.

From section §12.4, we can observe that the JIT rewrite compiler requires that

the R-expr a�er a rewrite has been applied is predictable. If a rewrite does not

result in a predictable R-expr, then the JIT compiler would be required to generate

many di�erent branches for the di�erent states that could result from a particular

rewrite. If there are too many JIT-generated states, the JIT compilation will become

210The JIT compiler also generates the necessary code to implement the getIterables for all
JIT-generated R-expr kinds.

230

1: global aggregationResult← agg_null ▷ Where the resulting value of aggregation is

stored

2: aggregationResiduals← 0 ▷ R-expr of still un-evaluatable R-exprs

3: allIterators← getIterables(· · ·)210 ▷ Get iterators from R-expr, section §11.7

4: iterator← StartIteratorWithVarOrder(allIterators, [X, Y, Z])
5: if iterator == null : ▷ If there is not the right iterator, the precondition for the rewrite fails

6: throw CheckFailure ▷ Abort rewrite, as described in section §12.4.4

7: for ⟨x,continuation⟩ ∈ iterator.Run() : ▷ Run iterator

8: R← state941(x, continuation, · · ·) ▷ JIT-generated R-expr representing agg body

9: R'← Simplify(R, C) ▷ Evaluate the aggregator’s body in its own R-expr rewrite “unit”

10: if R' ̸= 0 : ▷ Check if there is an R-expr residual

11: aggregationResiduals← aggregationResiduals + R'

12: if aggregationResiduals == 0 : ▷ if no R-expr residual

13: ▷ The aggregation is done, and the result is in aggregationResult

14: if aggregationResult == agg_null :
15: “return” 0
16: else
17: “return” (A=aggregationResult)

18: else
19: ▷ Return the aggregator with the delayed residual R-expr

20: “return” (A=sum(X,(X=aggregationResult)+aggregationResiduals))

Figure 12-10. Conceptual example of aggregation performed by a JIT-generated
rewrite on the outer aggregator. The accumulator variable is initialized on line 1 and
will be modified inside of Simplify, called on line 9. Like with e�icient aggregators
in section §11.6.3, the aggregation is done when the residual R-expr is rewri�en as
0 (line 12).

231

ine�icient, as it is di�icult to benefit from reuse of existing JIT-generated states.

Therefore, we exclude R-exprs that are frequently rewri�en in di�icult-to-predict

ways. To handle these R-expr kinds, they are represented using holes in the JIT-

generated R-expr; therefore, they are passed around and simplified as opaque

R-expr pointers and not otherwise handled by the JIT.

The R-exprs kinds which we do not support are as follows:

1. An obvious case is the R-expr that converts from the Dyna AST into R-exprs

(section §11.3). This R-expr can result in any possible R-expr depending on

the shape of the program. Furthermore, these R-exprs are only used when

translating the Dyna source. This rarely happens in the running of the program.

Hence, we are unlikely to benefit from making it run faster.

2. Another case of unpredictable R-exprs are disjunctions. For example, suppose

that we have R1+R2+R3+· · ·+Rn, if we consider that each Ri could be independently

rewri�en as 0, then there are potentially 2n possible states in which this

R-expr could be rewri�en. This means that we could potentially generate

these 2n states and the corresponding rewrites between them. To limit this,

I only allow small211 disjunctions to be generated in the JIT. The idea here

is that a small disjunction likely represents a function that would benefit

from compilation. For example, the rectified linear function f (x) = max{0,x}

would be represented as the R-expr (A=max(Y,(Y=0)+(Y=X))) which includes a

disjunction. In contrast, a large disjunction might represent a table of values

or a memo. Hence, retrieving data from the hash table trie (section §11.6.1)

would be more e�icient than a chain of if-expressions.

3. Memo read R-exprs are also excluded for the same reason as disjunctions.

4. We also do not include user-defined R-expr kinds in the JIT-generated R-expr

kinds. The reason is that user-defined R-exprs can be redefined at the REPL or

by guessing with memoization. This means that any JIT state that included a

user-defined R-expr (and rewrites on those states) would have to be invalidated.

Furthermore, user-defined R-exprs o�en indirect through memo tables and

211Small disjunctions are currently set as a disjunction with fewer than 8 children. The limit of 8

was chosen without any data to inform this choice. In the future, one may wish to reconsider this
limit and experimental with di�erent configurations of the JIT compiler.

232

include a disjunction inside of their definition. Hence, a generated R-expr that

includes a user-defined R-expr would not be able to represent that much in

the first place.

While limiting disjunctions, memos, and user-defined R-exprs seems like a big

limitation, we can still work around it. One way to work around this is by merging

a JIT state with the R-expr, which is held in as an opaque pointer inside of the

JIT hole. This is accomplished by allowing JIT to create a rewrite that matches

the R-expr contained in the hole and add it to the current JIT state. This means

that once the R-expr contained in a hole has been su�iciently rewri�en, it can be

merged to create a larger JIT-generated R-expr state.

12.6 Starting the JIT Compiler

So far, we have that we can take an R-expr and represent it as a JIT-generated

R-expr state and then create rewrites on those states. However, this leaves the

question of how to create the initial seed JIT-generated states.

The way that I do this is by starting from 1) user-defined R-exprs (as in figure 12-

3) and 2) R-exprs that are nested under disjunctions and turning these into JIT-

generated states. The reason to use user-defined R-exprs is that these are likely to

reappear a lot and be used in the same way. Hence, using a user-defined R-expr as

a seed is akin to compiling a user-defined method. The second case for an R-expr

under a disjunction is that the disjunction itself does not get compiled. However,

the leaves of the disjunction might still contain code.

This choice of seed is, of course, a heuristic and something that future work may

wish to revisit.

12.7 Experiments: Benchmarks

Our ability to run real-world programs is still limited by the runtime performance

of the implementation on the whole. In chapter §16, I discuss possible directions to

further improve the runtime of Dyna. So, unfortunately, at this time, I do not have

benchmarks on “real-world” problems. However, we can still benchmark a small

233

671 f(X) += I for range(0, X, I).212

(a) Dyna

672 def f(X):

673 return sum(range(X))

(b) Python

674 (defn f [X]

675 (reduce + (range X)))

(c) Clojure

676 int f(int X) {

677 return IntStream.range(0,X).sum();

678 }

(d) Java using Streams

Figure 12-11. Simple program that computes ∑
x
i=0 i. To measure the overhead vs

time doing the additions, we can vary the value of X to increase the size of the
problem.

Dyna program to measure how the JIT and non-JIT rewrites compare. Additionally,

we can compare again other programming languages running the same program

to observe how more the Dyna implementation needs to be improved.

The programwe will use to compare computes the sum of integers between 0 and

x. I am running this program without special optimizations (such as recognizing

that ∑
x
i=0 i = x∗ (x+1)/2), so this test is an evaluation of how fast we can run a

loop over the values of x and perform a small numerical processing task during

each step. Figure 12-11 shows what this program looks like in a number of di�erent

programming languages.

First, we can observe in figure 12-12, the ratio of the runtimes between the

non-JIT-compiled code and the JIT-compiled code. The JIT makes this program run

roughly five times faster. In making the JIT-generated version, the initial seed state

(section §12.6) was created before the program started running, but no rewrites

were created. The first warm up run has been removed from the graph. The first

run, which triggers the generation of rewrites, is 20 times slower than the first run

212The range(0,X,I) is a builtin that loops over integers between 0 and X. The built-in can
be wri�en explicitly, as done here, or inferred through a conjunction of an int constraint and
two lessthan constraints that provides both an upper and a lower bound. The range(0,X,I)
constraint provides an iterator over the domain of the variable I, which is used to drive the loop.
213The run for the first value has been removed from the graph. The reason is that it included the

time for the JIT compiler to generate the rewrites and compile the Clojure code. For the initial run
that was eliminated, the JIT compiled version was 20 times slower than the non-JIT version. For all
subsequent runs shown in figure 12-12, the JIT-compiled was usually much faster.

234

2
3
of the time is wasted on checking if “useless” rewrites could apply. Conversely,

a�er generating new R-expr states and making JIT-generated rewrites, we see that

100% of the a�empted matches match and run rewrites successfully. The JIT only

generates rewrites for the scenarios that we have been previously encountered.

Because this program is repeating the same operation multiple times (summing an

integer), there are no unnecessary rewrites loaded into the system, and therefore

no wasted e�ort in searching through matching rewrites. This is similar to the

kinds of numerical programs that are typical of machine learning algorithms

In addition to observing that the JIT does help the runtime, we also compare

it against other programming languages. In figure 12-14, I show the runtime per

number summed for Dyna with and without JIT-compilation, Python, Clojure, and

Java. We can observe that the JIT-compiled R-exprs rewrites are 120 times slower

than Python (6010 times slower than Java). Further delving into this in figure 12-15,

we can profile where the JIT-compiled version is spending its time. It appears that

much of the time spent is on non-R-expr rewriting activities, such as initializing

hash-tables used for the context’s internal data structures, computing hash-codes

for R-exprs, and accessing globally accessible objects such as the context. The good

news from figure 12-15 is that there is a lot of opportunity to make the system run

faster through careful engineering to avoid these unnecessary overheads. The bad

news from figure 12-14 is that Dyna is 120 times slower than Python and likely still

too slow for “real-world” problems.

237

Figure 12-15. This is a flame graph for the benchmark from figure 12-11a running with JIT-generated rewrites.
We can observe that 85.19% of the runtime is taken up by a JIT-generated rewrite that represents the outer part
of the aggregation (conceptually what is in figure 12-10). This rewrite internally calls simplify and performs other
rewrites. We can observe that 23% of the overall time (27% of the rewrite) is spent rewriting the JIT-generated
R-expr that represents the body of aggregation (line 9 in figure 12-10). The creation and manipulation of nested
contexts account for 22% of the overall runtime (26% of the rewrite). 15% of the overall runtime is spent creating
R-exprs, more specially the profile seems to indicate that creating cached hash codes is somehow the expensive
part of this. Approximately 10% of the overall runtime is spent reading and writing from global variables. This
is, of course, subject to the profiler’s ability to measure these typically fast functions, but accessing the global
context does happen frequently, so it is conceivable that this is a correct measurement.

239

Chapter 13

Object Oriented
Programming in a Pure
Declarative Language

13.1 Dynabases

Object oriented design in Dyna with dynabases was originally proposed by Eisner

and Filardo in [59] with an expanded discussion in Filardo’s dissertation [66].

Unfortunately, the prior work did not include an implementation or complete

details. This dissertation contributes for the first time working details of the

syntax for dynabases (section §2.9) and a working implementation of dynabases.

The design of dynabases in this dissertation has some di�erences from the one

proposed in [59, 66], though these di�erences will be immaterial to most users.

Dynabases provide prototype-based inheritance [49, 59, 133, 136] for logic pro-

gramming. A dynabase object can be extended by adding rules to a dynabase a�er

it has been “created”. Dynabases are open, in that additional rules can be added to

the dynabase’s “class definition” at any point, even a�er “instances” of the class

have been instantiated. Allowing rules to be added to a dynabase is consistent with

Dyna’s out-of-order execution, where the program is a collection of rules, and the

system is looking for a consistent assignment to all terms defined by the program,

regardless of the order in which they were defined.

240

To implement this behavior, dynabases are not allocated objects, as is typical

in a procedural programming language. Rather a dynabase is represented using

an immutable dynabase term identifier, as will be described in section §13.2. The

dynabase identifier can be used to call terms defined on the dynabase, much the

same way that a structured-term (section §2.1.1) can be passed as an argument to

a term. As such, we will see in section §13.3 that dynabases can be implemented as

almost a purely syntactic transformation before the program is converted to R-exprs

(chapter §7). This is conceptually similar to what appeared in previous publications

about Dyna’s object-oriented design [59, 66] as well for prototype-based inheritance

in Prolog with the LogTalk project [49].

13.2 Dynabase Object Representation

Dynabases allow closures capturing all variables present when they are instanti-

ated. Dynabases also support single inheritance. Conceptually, we can think of a

dynabase’s identifier as an immutable list of dynabases types that the dynabase

instance inherited from. If we are to use the Dyna notation from section §2.1.1,

then a dynabase object would look something like:

679 [dynabase_123[CapturedVar1, CapturedVar2], dynabase_789[X, Y]]

Here, the numerical identifiers 123 and 789 on line 679 identify the dynabase class

types that this object inherits from. The variables CapturedVar1, CapturedVar2, X,

Y are the captured variables that were present when the dynabase was instanti-

ated. The presentation on line 679 is conceptually similar to what was presented

previously in Eisner and Filardo [59].

While the array of identifiers on line 679 is conceptually correct, we instead

going to use a slightly di�erent design in the implementation for e�iciency reasons.

Instead, we are going to group the dynabases by dynabase class identifier into a

map and then have a list of lists to track the captured variables. As a Java type, this

looks like line 680:

680 Map<DynabaseTypeID, List<List<G>>>

Here, DynabaseTypeID is an opaque class identifier. The identifier is generated

to be unique when the Dyna program is converted from the Dyna AST into R-exprs.

The DynabaseTypeID identifier corresponds with the dynabase’s “class” rather than

241

an instance of the dynabase. For the presentation in this chapter, I will use the line

number on which a dynabase is defined on as the identifier.

The value associated with each dynabase class identifier is List<List<G>>. The

inner List<G> contains the values of the captured variables when the dynabase is

created. The order in which the values are held in List<G> is chosen arbitrarily,

but the generated code will consistently reference the variables in the slots.

The second list of lists is to support the scenario where a dynabase type can

appear more than once. This happens when self-inheritance is used. This will be

discussed in more detail in section §13.5.

13.2.1 Why Capture All Variables?

Dynabases capture all local variables when created. The reason why it needs to

capture all of the variables in the current rule is that a dynabase might be modified

or referenced from places other than where it was constructed. For example,

consider the dynabase on line 681.

681 f(X) = new {}.

682

683 db_a = f(1).

684 db_b = f(2).

685

686 db_a.a = 123.

687 db_b.a = 456.

688

689 assert db_a.a == 123.

690 assert db_b.a == 456.

691 assert f(1).a == 123.

Here the functor f(X) has one variable X and returns an “empty” dynabase. On

lines 683 and 684, we construct two di�erent dynabases. We then proceed to modify

the dynabases by se�ing the “field” ‘a’ on lines 686 and 687. The values we have

assigned in each of these dynabases are distinct from each other (lines 689 and 690).

We, therefore, must have some way to track this distinction between dynabases.

If this were a procedural language, then we would use the fact that we are

creating two di�erent instances of an object with two di�erent locations in memory

as a result of the two di�erent function calls on lines 683 and 684. However, by

242

the nature of being declarative and functional, we require that every time that we

call a function with the same arguments (Dyna term), we get back the same result.

Hence, we can get db_a again by calling f(1) a second time as on line 691.

Therefore, we would either need a design that is required to store any dynabase

that is returned from a user-defined function or “recreate” the same dynabase

multiple times. We have opted to recreate the same dynabase object multiple

times. This is done by returning an immutable identifier from f(1) rather than

a mutable object. Furthermore, f(·) defined on line 681 must return di�erent

dynabase identifiers when f(1) is called on line 683, and when f(2) is called on

line 684. To make this work, there needs to be a distinguishing feature between the

call to f(1) and f(2). The only distinguishing feature is the assignment to variables

present in the rule. (In this case, the variable X.) Hence, we capture the value of all

variables when creating a dynabase.

Consequence of this design: An consequence of this design is that we can-

not construct two (or more) dynabases at the same time in a single rule.

For example, the following program does not work:

692 does_not_work(X) = (A = new {}), (B = new {}), A.

The reason for this is that both the A dynabase and the B dynabase need to capture

a ground value reference of the other (we do not allow for cycles in the ground

values). In my opinion, this is not an issue, as it can easily be worked around by

ensuring that there is at most one dynabase constructed per functor:

693 make_B(X) = new {}.

694 works(X) = (A = new {}), (B = make_B(X)), A.

If a user writes a rule like line 692, this is detected and reported as an error to the

user.

Future work may consider adding an automatic transformation to the AST-

to-R-expr front-end to perform a transformation like line 693 to allow multiple

dynabases to be defined in a single Dyna rule.

13.3 Desugared Dynabases

In converting a Dyna program with dynabases into an R-expr, there are two

cases that we have to handle: constructing a dynabase and calling methods (ac-

243

cessing fields) on a dynabase. Both of these cases are handled by introducing

new R-expr types, which are called dynabaseCreatedynabaseTypeID(SuperDynabase,

Var1, · · ·, VarN, Result) and dynabaseAccessdynabaseTypeID(Dynabase, Var1, · · ·,

VarN).

The dynabaseCreateR-expr is annotatedwith an opaque symbol dynabaseTypeID,214

which is picked to be unique when the program is translated from the Dyna source

code. The variable SuperDynabase is the dynabase inherited from. The variables

Var1, . . ., VarN are the captured local variables (section §13.2.1).

To illustrate the translation process, consider the following Dyna program on

lines 695 to 704 with dynabases. To make the translation easier to read, I will show

the translation using “pseudo Dyna”, which is an intermediate step in translating

from Dyna into R-exprs.

695 e = new {

696 val = 123.

697 }.

698 f(X,Y) = new {

699 val += X.

700 val += Y.

701 func(X) = $self.val * X.

702 }.

703

704 g = f(1,2).val.

With dynabases desugared:

705 e = dynabaseCreate_695($nil, Result), Result. % From line 695

706 val(Dynabase) = dynabaseAccess_695(Dynabase), 123. % From line 696

707 f(X,Y) = dynabaseCreate_698($nil, X, Y, Result), Result. % From line 698

708 val(Dynabase) += dynabaseAccess_698(Dynabase, X, Y), X. % From line 699

709 val(Dynabase) += dynabaseAccess_698(Dynabase, X, Y), Y. % From line 700

710 func(DBase, X) = dynabaseAccess_698(DBase,_,Y), val(DBase)*X. %From L701

711

712 g = val(f(1,2)). % From line 704

Note that the rule val appears on both dynabase_695 and dynabase_698. The

distinguishing factor between the val rules are the dynabaseAccess R-exprs. The

214There is one R-expr class that implements the dynabaseCreate R-expr, and dynabaseTypeID

is held in ametadata field on theR-expr class. This is the same as with structural-equality constraints
that track the name of the structural-term through a metadata field, section §8.1.

244

reason for this is that dynabases inherit from each other, and as such, there are

rules that are defined in di�erent dynabases that need to be combined. This means

that a “compile-time” function dispatch only considers the functor name (val in

this example). A secondary “runtime” dispatch selects the relevant rules that define

the val terms from lines 706, 708 and 709. This is done by using the value assigned

to the Dynabase variable to rewrite the dynabaseAccess R-expr.

The approach of grouping by functor name and using dynabaseAccess_698 is

necessary to allow modifications to the dynabase a�er it has been initially defined.

For example, consider line 715 where we define a new value v on a dynabase.

713 db(X) = new {a = 1.} for X > 0.

714 db(X) = new {b = 2.} for X <= 0.

715 db(X).v = 2 + X.

On line 715 we do not know the dynabase type we are modifying. In fact, we are

actually defining ‘v’ on two di�erent dynabase types at the same time. When we

desugar line 715, we get something like line 716 below.

716 v(Dynabase) = (Dynabase = db(X)), 2 + X. % From line 715

Here, we have that the dynabase is represented using the variable Dynabase. We

only need to find a value of X such that the expression Dynabase = db(X), is true.

This can be handled using rewrites on dynabaseCreate.

13.4 Dynabase Rewrite Rules

The dynabase rewrite rules are fairly straightforward. The inheritance relations

between dynabase types are tracked via a global data structure and updated

whenever a new dynabase instance is created by the dynabaseCreate rewrite rules.

Some of the rewrite rules for dynabases are conditionally enabled and disabled

depending on the inheritance between di�erent dynabase types.

dynabaseCreate_698(SuperDB, X, Y, Result)
88
−→ (Result=dynabase object)

if SuperDB, X, Y ∈ G

dynabaseCreate_698(SuperDB, X, Y, Result)
89
−→ (SuperDB=dbase

object)*(X=x)*(Y=y)

if Result ∈ G and dynabase_698 does not self-inherit

dynabaseAccess_698(Dynabase, X, Y)
90
−→ ((X=x1)*(Y=y1) + ▷allow self-inherit

245

(X=x2)*(Y=y2) +

(X=x3)*(Y=y3) + · · ·) if Dynabase ∈ G

dynabaseAccess_698(Dynabase, X, Y)*dynabaseAccess_695(Dynabase)
91
−→ 0 if (

dynabase_698 and dynabase_695 are incompatible (w.r.t. inheritance))

(dynabaseCreate_698(SuperDynabase, X, Y, Dynabase) *

dynabaseCreate_695(SuperDynabase2, Dynabase))
92
−→ 0 if (

dynabase_698 and dynabase_695 are incompatible (w.r.t. inheritance))

(dynabaseCreate_698(SuperDynabase, X, Y, Dynabase)*

dynabaseAccess_695(Dynabase))
93
−→ 0 if (

dynabase_698 and dynabase_695 are incompatible (w.r.t. inheritance))

Rewrite rule 88 creates a dynabase object in the case that all of the arguments

are ground. The SuperDB variable is the dynabase object from which the created

dynabase inherits. In the case where there is no parent dynabase, then this variable

is set to the value $nil.

Like with structured-terms, the dynabaseCreate R-expr both creates dynabase

objects and destructure dynabase objects, ge�ing access to the variables captured

by the dynabase closure. This is done using rewrite rule 89, which requires that the

Result variable is assigned dynabase that inherits from dynabase_698. Rewrite

rule 89 is used when evaluating Dynabase = db(X) from line 715. Further note that

rewrite rule 89 is disabled in the case that a dynabase type self-inherits. I will

discuss the reason further in section §13.5.

Rewrite rule 90 is used to match a dynabase object for rules that were defined

inside of the dynabase’s definition. This was used by lines 706 and 708 to 710.

Observe that rewrite rule 90 rewrites as a disjunction of bindings to the variables

X and Y. This is a disjunction over all of the times that a dynabase type has been

inherited from in constructing a dynabase object. A single dynabase type appearing

more than once in the case of self-inheritance, which will be discussed in section

§13.5. Note, in the case that a dynabase type does not self-inherit, rewrite rule 90

will only rewrite a single assignment to the variables X and Y for a given assignment

to the Dynabase variable.

Rewrite rules 91 to 93 implement “type checks” that cause an R-expr to be

rewri�en as 0, thus eliminating dead code. Rewrite rules 91 to 93 do not require

that the value of the Dynabase is known for these rewrites to apply. However, these

rewrites depend on the information about how dynabases inherit from each other.

246

This inheritance information can be updated a�er the system has started running.

As such, applications of rewrite rules 91 to 93 depend on the state of dynabase

inheritance, and usage of these rewrite rules is tracked using the assumption

mechanism previously discussed in section §10.4.1.

13.5 Self-Inheritance

As hinted at in the previous section, self-inheritance with dynabases allows for

some strange interaction and causes rewrite rule 89 to become disabled in the case

there is self-inheritance. So what is self-inheritance, why is it interesting, and why

does it cause things to break? To answer this, let us work through a small example

of self-inheritance to see what it is, how it works, and how we can build towards

a logical inconsistency that prevents us from using rewrite rule 89 in the case of

self-inheritance.

We define dynabase_717 on line 717, which inherits from the argument X.215

By passing in a dynabase that has already inherited from dynabase_717, we can

self-inherit, as is done on lines 722 and 723.

717 f(X) = new (X) {

718 z += 1.

719 }.

720 a = new {}.

721 af = f(a).

722 aff = f(af).

723 afff = f(aff).

724 assert af.z == 1

725 assert aff.z == 2.

726 assert afff.z == 3.

Observe that we have defined ‘z’ on line 718 to essentially count the number of

times that dynabase_717 has been inherited from. The way this works is that ‘z’

is desugared to use the dynabaseAccess_717 R-expr:

727 z(Dynabase) += dynabaseAccess_717(Dynabase, X), 1. % From line 718

215An alternate way to get self-inheritance is by defining a term in terms of itself using recursion.
Something like
f(N) := new f(N-1) { z += N. }.

f(0) := new {}.

247

And then the dynabaseAccess_717 R-expr will rewrite using rewrite rule 90 into

a disjunction of the di�erent values of X that contributed to creating the ‘afff’

dynabase object:

dynabaseAccess_717(afff, X)
90
−→ (X=a) + (X=af) + (X=aff)

Now, ‘afff.z’ returning the value 3 is exactly what we want to happen using

the dynabaseAccess, which is used for rules defined inside of the dynabase’s initial

definition. Now, let us consider a scenario where dynabaseCreate, which is disabled,

is used instead.

Before we do work through the dynabaseCreate scenario, let us build up to this

case with a by defining ‘w’ as a standard, non-dynabase, Dyna term:

728 w(D) += 1.

729 assert w(a) == 1.

730 assert w(af) == 1.

731 assert w(aff) == 1.

732 assert w(afff) == 1.

There are no tricks here in defining ‘w’ in that we sum the value 1 for every

unique term passed as an argument to ‘w’. Now, let us define w2 with a constraint

on the variable ‘D’.

733 w2(D) += (D = f(X)), 1.

734 assert is_null(w2(a)).

735 assert w2(af) == 1.

736 assert w2(aff) == 1.

737 assert w2(afff) == 1.

Here ‘(D = f(X)) ’ requires that there exists some value for X, such that the value

held in the variable D is returned. As already discussed in section §13.3, line 733 is

equivalent to line 738.

738 f(X).w2 += 1.

Now we can begin to see the problem. The interpretation of line 738 should be

that the value of ‘w2’ defined on the dynabase returned from the function f(X)

should be equivalent to the value of ‘z’. Hence, it should be counted multiple times.

However, this is di�erent from the interpretation of ‘w2’ as defined on line 733.

Rather than trying to reconcile the two ways in which ‘w2’ could be interpreted,

we instead disable rewrite rule 89. This means that if a user writes a rule like line 733

248

or line 738 they get back unrewri�en R-expr instead of the value 1 or 3. Admi�edly,

an unrewri�en R-expr is rarely the desired result, but at least this does not give an

incorrect answer. Furthermore, this issue can be avoided by defining rules inside of

the dynabases definition, as with the definition of ‘z’ on line 718.

Finally, I want to reiterate that without self-inheritance, dynabases are concep-

tually very simple. The reason for the additional complexity of dynabases largely

has to deal with self-inheritance, and for rewrites on dynabases to work as “compile

time” rewrites when possible.

13.6 Comparisonwith 2011 Proposal forDynabases

The design presented in this chapter is my own design for dynabases. However, it

is not the only possible design for dynabases. When dealing with simple dynabases

that do not use self-inheritance or “external modifications” of the dynabase (such

as line 715), then all proposed implementations of dynabases exhibit similar behav-

ior. However, how self-inheritance (section §13.5) and external modification (e.g.

line 715) are handled does di�er between the proposed implementations.

In Eisner and Filardo [59], the authors proposed “collect[ing] the relevant rules by

recursively traversing [the dynabase’s] parent [reference216]”. This is, of course, the

right high-level idea, but as we saw in section §13.5, there are many details that are

needed to make this operational. Furthermore, I note that Eisner and Filardo [59]

did not distinguish between dynabaseCreate and dynabaseAccess R-exprs as was

done here. Instead, they only use Dyna-to-Dyna translations like (Dynabase=db(X))

(e.g. line 716), which depends on the interpretation of their “dynabaseCreate” op-

eration. The issue of self-inheritance (the disjunction in rewrite rule 89) was not

addressed in [59].

Filardo did expand on the [59] design in his dissertation [66] section 6.2. In

section 6.2.2 “Rule-Collection Semantics With Recursive Owner Writes”, Filardo

also recognized the issue of self-inheritance. Filardo’s section 6.2.2 a�empted to fix

the issue of self-inheritance by introducing a concept he called “focused dynabase”

into the “collect-relevant-rules” function. Unfortunately, Filardo did not work out

216The dynabase’s parent reference is akin to the SuperDynabase variable in section §13.3, which
could be stored in a list data structure, as discussed at the beginning of section §13.2.

249

the details of how the “focused dynabase” would integrate into the execution of

the Dyna program that had dynabases, and how it works with calls to other terms

defined on a dynabase. Although the design from [59] and [66] does not have an

implementation and the description in [59, 66] is partially incomplete, I believe

that regardless of how the design from [59, 66] is completed, it would run into the

same kinds of issues that we have in the case of self-inheritance (section §13.5).

To illustrate some of the complications with dynabases, and how the way this

chapter handles dynabases vs [59, 66], let us work through the following example

program on lines 739 to 753.

739 f(X) = new (X) {

740 q += 1.

741 r += $self.q.

742 s += $self.u.

743 t += $self.ss.s.

744 }.

745 a = new {

746 ss = $self.

747 }.

748 af = f(a).

749 aff = f(af).

750 afff = f(aff).

751 afffb = new afff {

752 u += 1.

753 }.

Here, I am defining dynabase_739 as a dynabase that self-inherits. Observe that

the ‘q’ term on line 740 is the same as the ‘z’ from section §13.5 in that it counts

the number of times that dynabase_739 is inherited from. However, this time, we

additionally have the ‘r’ term that sums the value of ‘q’ every time it is added. The

question we need to answer to understand how the system works is how $self on

line 741 is defined as rules are added by recursively traversing the parent references.

Before delving into the discussion about [59, 66], I will note that for this example

running under the design presented in this chapter, we have afffb.r == 9 and

afffb.t == 9, as $self always reference the dynabase that is being called (in this

case the value afffb). Hence, $self.q on line 741 returns the value 3. Furthermore,

the call to $self.u on line 742 will refer to the ‘u’ defined on line 752, even though ‘u’

is defined in a descendant dynabase. This approach of making $self reference the

250

dynabase object that and calling functions that have been overridden is consistent

with the behavior that is typically used when doing object-oriented programming.

Now, we turn our a�ention to the design from [59, 66]. When evaluating afffb.r,

I assume that the “focused dynabase” was intended to be afffb, which would have

allowed the collect-relevant-rules function to identify that ‘r’ from line 741 needs to

have 3 contributions. Next, we need to consider how $self references the relevant

dynabase.

A first possible interpretation of $self would be to define $self as only referenc-

ing the current dynabase (this would have allowed for values computed in parent

dynabases to be cached using memoization and modified by the children), then this

would mean that $self is not able to reference functions on children dynabases.

This is problematic for compositionality. This interpretation of $self would mean

that afffb.t is undefined as the $self on line 742 would be unable to reference the

‘u’ defined on line 752. I note this design as [59] proposed caching the computation

performed on parent dynabases. Filardo [66] rejects this idea and instead makes

$self a dynamic variable that includes references to the rules defined on children

dynabases.

Going to the second interpretation of $self as a dynamic variable that refer-

ences the “focused dynabase”, this still leaves the question of how $self and the

($self=db(X)) constraint from the Dyna-to-Dyna translation interact. Unfortu-

nately, these details were glossed over. Presumably, had these details been added,

it would have resulted in something like the dynabaseAccess R-expr that can handle

self-inheritance and match in the case where it is a parent of the current dynabase.

Finally, I will note that [59, 66] proposed an access control mechanism that

was introduced through an additional hidden variable that tracked the owner

dynabase. I have chosen to do away with the owner concept for dynabases. Instead,

anyone who has a pointer to a dynabase can modify it. This simplifies the design

of dynabases and the amount of information one has to learn to use Dyna.

251

Chapter 14

Folding and Speculative
Rewrites for Recursive
Programs

When rewriting calls to user-defined R-expr (section §5.2.2.11), our general ap-

proach is to expand the user definition (rewrite rule 74). This is su�icient for

non-recursive programs, as, without recursion, we can expand the R-expr to the

maximum depth and have a finite-sized R-expr where rewrites can be applied

arbitrarily. Unfortunately, when there is recursion, we cannot expand the R-expr

all of the way.217

One way we can handle recursive programs while still being able to leverage the

power of R-exprs is by using fold/unfold transformations. [22, 25, 58, 80, 97, 141]

This essentially creates new automatically defined functions which are specialized

to a specific case. This can allow us to make inferences for recursive programs,

which may be useful in some cases.

The unfold transform is analogous to rewrite rule 74 that we have already seen.

A user-defined R-expr is expanded to its R-expr definition, with variables renamed

as needed.

The fold transform is the reverse of unfolding an R-expr. Folding generates a

217As the R-expr will keep growing in size every time it is expanded. In other words, the program
has a “data dependency” to ensure that the recursion eventually reaches a base case.

252

new, automatically named R-expr. This can be wri�en as rewrite rule 94, where ‘f’

is a newly chosen name.

Rf
94
−→ f(X1,X2,X3,. . .,Xn) where {X1,X2,X3,. . .,Xn} = vars(R)

14.1 Why Fold a Program

The reason why one might want to fold a program is that, in the case of a recursive

program, a folded definition can depend on itself. This allows us to perform rewrites

that optimize recursive functions before it is unfolded in the context of the input to

the Dyna program is processed. For example, if we have a higher-order function that

performs an indirect function, we can create a specialized version of the function

that does not perform an indirect call and can enable other rewrites the opportunity

to optimize the R-expr. For example consider the map function below in figure 14-1

that applies a function to a list:

754 map(F, []) = [].

755 map(F, [Head|Tail]) =

756 [F(Head)|

757 map(F,Tail)].

(a) Dyna

map(F, L, Res) → (Res=only(Inp,

(L=[])*(Inp=[])+

proj(Head,proj(Tail,proj(Tmp1,proj(Tmp2,

(L=[Head|Tail])*

indirect_call(F, Head, Tmp1)*

map(F, Tail, Tmp2)*

(Inp=[Tmp1|Tmp2])))))))

(b) R-expr

Figure 14-1. A recursive function that makes an indirect call. Here the map function
(lines 754 to 757) applies the function F to all elements in the list. The indirect call
(line 756) is compiled into the indirect_call(F,· · ·) R-expr.

The indirect_call R-expr makes the map function in figure 14-1 di�icult to

analyze and compile. Ideally, we want to eliminate all indirect_calls. In the case

of the map function, this can accomplish by creating a specialized version as in

figure 14-2.218

218In this example, folding away the indirect_call is similar to using a template in C++ which
allows function calls to be static (rather than require a runtime indirection through a function
pointer).

253

758 times2(X) = X*2.

759 b(L) = map(

760 times2[], L).

761 assert b([1,2,3])

== [2,4,6].

(a) Dyna

b(L,Res) → (Res=only(Inp,map_times_2(L, Inp)))

proj(F, map(F,L,Res)*(F=times2[])) → map_times_2

(L, Res)

map_times_2(L, Res) → (Res=only(Inp,

(L=[])*(Inp=[])+

proj(Head,proj(Tail,proj(Tmp1,proj(Tmp2,

(L=[Head|Tail])*

times(Head, 2, Tmp1)*

map_times_2(Tail, Tmp2)*

(Inp=[Tmp1|Tmp2])))))))

(b) R-expr with times2 folded into the map R-expr.

Figure 14-2. Folding with map eliminates the indirect_call which can block other
rewrites.

The remainder of this chapter is not intended to be a complete discussion about

why one wants to fold programs or what kinds of programs folding can help solve.

To find some discussion around why one wants to fold, how folding can solve

certain kinds of programs, and how folding can be used to change the asymptotic

runtime of a program, I suggest that the reader look into prior work such as Eisner

and Blatz [58] and Vieira [141], both of which discuss folding on Dyna programs

that have a single semiring. More generally, [22, 25, 80, 97] discuss folding on

functional programming and logic programming.

14.2 How to Fold

Folding a program represented as a collection of R-exprs can be completed in a few

steps.219

First, observe that folding is only useful in the case of a recursive function. Non-

recursive functions can be expanded entirely. This means that we first identify if a

user-defined R-expr is recursive, or depends on a recursive R-expr, and will target

those user-defined R-exprs only. These functions are identified by constructing

219Folding on R-expr was implemented on the R-expr prototype https://github.com/argolab/
dyna-R, and has yet to be reimplemented on the Clojure implementation from chapter §11.

254

https://github.com/argolab/dyna-R
https://github.com/argolab/dyna-R

a call graph and identifying which user-defined R-exprs are depended on when

expanding user-defined rewrites (rewrite rule 74). For example, if we have a user-

defined R-expr f(· · ·), which calls itself directly, then its rewrite rule will include a

f(· · ·) R-expr in the result of the rewrite:

f(· · ·)
74
−→ ·· ·*f(· · ·)*· · ·

Or in the case of indirect calls such as with g(· · ·) and h(· · ·) that require computing

the call graph:

g(· · ·)
74
−→ ·· ·*h(· · ·)*· · ·

h(· · ·)
74
−→ ·· ·*g(· · ·)*· · ·

Once the system has identified a user-defined R-expr that is recursive, it unfolds

the user-defined R-expr so that it has a single large R-expr that represents two

or more steps of the recursive call. If the recursion happens indirectly (such as

with g(· · ·) and h(· · ·)), then the system unfolds the user-defined R-exprs until it

expands all the way to the recursive calls.

Once the recursive user-defined R-exprs has been identified, the system will use

folding to a�empt to create new user-defined R-exprs. These R-exprs are identified

as a conjunction of R-exprs that are folded together. This is implemented by

normalizing the variable names on the R-expr and then using the fact that R-exprs

supports hashing and equality checks (chapter §8), and therefore can be used as

keys in a hash-table.

If the newly folded R-expr is di�erent from the existing user-defined R-exprs and

previously folded R-exprs, it is added to the set of automatically defined R-exprs.

If folded R-expr already exists, then the existing R-expr is referenced rather than

creating another identical named R-expr.

The newly created R-expr will contain a call to a recursive user-defined R-expr.

Hence, it will be checked for additional folding opportunities within itself.

An example of this process is shown in the next section.

255

14.3 Example Using Folding to Solve a Recursive
Program

To see how folding a user-defined R-expr works, let us work through an example of

intersecting an even and odd length list in figure 14-3. Here, both even_list and

odd_list are recursive functions. Independently, for these recursive functions, there

is nothing that the system can do. However, once we take a conjunction of these on

line 766, then there are rewrites that can identify that this term is impossible for

all inputs provided we can work around the recursion using folding.

762 even_list([]).

763 even_list([X,Y|Tail]) :- even_list(Tail).

764 odd_list([X]).

765 odd_list([X,Y|Tail]) :- odd_list(Tail).

766 no_possible_list(List) :- even_list(List), odd_list(List).

Figure 14-3. Even and odd list length example. There is no list whose length is
both even and odd, so the no_possible_list rule on line 766 as a null value for
every list.

The R-expr for figure 14-3 is shown in figure 14-4:

256

even_list(L) → (true=exists(true,

(L=[])+

proj(X,proj(Y,proj(Tail,

(L=[X,Y|Tail])*

even_list(Tail))))))

odd_list(L) → (true=exists(true,

proj(X, (L=[X]))+

proj(X,proj(Y,proj(Tail,

(L=[X,Y|Tail])*

odd_list(Tail))))))

no_possible_list(List) → (true=exists(true,

even_list(List)*odd_list(List)))

Figure 14-4. Even and Odd List translated into an R-expr. I am simplifying the
presentation by omi�ing the Result variable as it would simply take on the value
true at all times.

First, we can identify which user-defined R-exprs are recursive in this pro-

gram. We will identify both even_list, odd_list as recursive and determine that

no_possible_list depends on them. Therefore, all of these R-exprs are candidates

for folding.

When the system tries folding even_list and odd_list, no interesting/new

R-exprs are found. The resulting R-exprs are equivalent to the existing even_list,

and odd_list, so nothing is done.220

However, when the system a�empts to process no_possible_list, it unfolds both

the even_list and odd_list and finds that it can use folding to create a new R-expr

that represents the first step of even_list and odd_list, as shown in figure 14-5:

220If a fold ends up ge�ing created, then it would be equivalent to the existing R-exprs, hence
unproductive. An unproductive fold is not invalid, just not useful.

257

even_list(L)*odd_list(L)
95
−→ even_and_odd_list(L)

even_and_odd_list(L)
96
−→

(true=exists(true,

(L=[])+

proj(X,proj(Y,proj(Tail,

(L=[X,Y|Tail])*

even_list(Tail))))))*

(true=exists(true,

proj(X, (L=[X]))+

proj(X,proj(Y,proj(Tail,

(L=[X,Y|Tail])*

odd_list(Tail))))))

no_possible_list(List) → (true=exists(true,

even_and_odd_list(List)))

Figure 14-5. The no_possible_list user-defined R-expr is defined in terms of the
now folded even_and_odd_list. Observe that even_and_odd_list does not need to
include aggregation at the top, like user-defined R-exprs that come from Dyna
programs, but rather is a conjunction of two aggregations that come from the
definition of even_list and odd_list. Further rewrites can be performed against
the definition of rewrite rule 96.

The system can ten perform rewrites against rewrite rule 96, to determine that

the (L=[]) and (L=[X]) are both impossible to satisfy. This is done by creating

another R-expr where (L=[]) is li�ed to the of the R-expr, and then observing that

the resulting R-expr rewrites as 0.221 This results in the R-exprs shown in figure 14-6.

221 E.g. (A=sum(X,R1+R2))*(B=sum(Y,S1+S2))
97
−→(A=sum(X,R2))*(B=sum(Y,S1+S2)) if

∀EJ(A=sum(X,R1+R2))*(B=sum(Y,S1+S2))*proj(X,proj(A,R1))K = 0.

258

even_list(L)*odd_list(L)
95
−→ even_and_odd_list(L)

even_and_odd_list(L)
96
−→

(true=exists(true,

proj(X,proj(Y,proj(Tail,

(L=[X,Y|Tail])*

even_list(Tail))))))*

(true=exists(true,

proj(X,proj(Y,proj(Tail,

(L=[X,Y|Tail])*

odd_list(Tail))))))

no_possible_list(List) → (true=exists(true,

even_and_odd_list(List)))

Figure 14-6. Analysis on rewrite rule 96 allows for (L=[]) and (L=[X]) to both be
rewri�en as 0.

Now by rearranging rewrite rule 96, we can li� even_list and odd_list out of the

aggregator as there are no other disjunctions present. This allows us to recognize

that even_list and odd_list are conjuncts and will create an R-expr like figure 14-7.

even_list(L)*odd_list(L)
95
−→ even_and_odd_list(L)

even_and_odd_list(L)
96
−→

(true=exists(true,

proj(X,proj(Y,proj(Tail,

(L=[X,Y|Tail])*

even_list(Tail)*

odd_list(Tail))))))

no_possible_list(List) → (true=exists(true,

even_and_odd_list(List)))

Figure 14-7. even_list and odd_list are conjuncts inside of even_and_odd_list,
rewrite rule 96.

Using rewrite rule 95, we can apply the fold to rewrite rule 96’s definition, which

will allow us to identify that this has already been defined, and it recursively calls

itself.

259

even_list(L)*odd_list(L)
95
−→ even_and_odd_list(L)

even_and_odd_list(L)
96
−→

(true=exists(true,

proj(X,proj(Y,proj(Tail,

(L=[X,Y|Tail])*

even_and_odd_list(Tail))))))

no_possible_list(List) → (true=exists(true,

even_and_odd_list(List)))

Figure 14-8. even_list and odd_list are folded together using rewrite rule 95, so
we can now recognize that even_and_odd_list recurses to itself.

The same mechanism that identifies recursive functions also checks that all

recursive functions have a base case. The reason is that recursive Dyna functions

without a base case are equivalent to null for all values. Hence, we can rewrite

rewrite rule 96 as 0 as shown in figure 14-9.

even_list(L)*odd_list(L)
95
−→ even_and_odd_list(L)

even_and_odd_list(L)
96
−→ 0

no_possible_list(List) → (true=exists(true,

even_and_odd_list(List)))

Figure 14-9. even_and_odd_list is found to be impossible due to the recursion
without a base case. Hence, it is rewri�en as 0

This sequence of rewrites and folding shows how the Dyna system can determine

that there is no list that is simultaneously even and odd in length at the same time.

14.4 Folding Updatable User-Defined R-exprs

Folded R-expr depends on the original user-defined R-expr. As such, if a user-

defined R-expr is modified (either by the API or by a user at the REPL), then all

downstream folded R-exprs have to be invalidated and refolded.

For user-defined R-exprs with memos, we completely disable folding for that

260

term. This is done by preventing user-defined R-exprs with memoization poli-

cies from unfolding when the system generates an R-expr to check for folding

opportunities (disabling rewrite rule 74). This is because memoized R-exprs can

include guesses, which cannot be bypassed (section §10.5). Furthermore, guesses

are expected to change frequently during the running of the program as the system

converges toward a final answer.

261

Chapter 15

Properties of Simplify

This chapter builds on the rewriting system defined in chapter §8. What we

can prove about our rewriting system is unfortunately less interesting than what

we might like—such is the reality of building a non-trivial programming language.

Nevertheless, I claim the following properties about our rewrite system, and provide

sketches for how these properties can be proven:

1. Soundness of Rewrites

2. Completeness on Datalog subset of Dyna

3. Incompleteness of Rewrites in general

4. Turing Completeness

5. Termination of SimplifyNormalize on bounded R-exprs

15.1 Is Simplify Sound and Complete?

Being sound and complete are desirable properties of a logical system. A system

is sound if it never proves a false statement. In other words, all statements that

are proven true are actually true. A system is complete if there exists a proof for

all true statements. In the case of term rewriting procedure (such as we have in

this dissertation), completeness may instead be defined in terms of the proofs that

are found through the systematic application of rewrite rules (e.g. Simplify given

262

in chapter §8), rather than claiming that there exist of a sequence of rewrites that

can prove a statement.

When it comes to R-exprs, their semantics, and their rewrites, let us briefly

discuss what it means for the rewrite system to prove a statement is true. Recall,

the R-exprs semantics is defined in terms of the multiplicity that it assigns to

an environment E(·) (chapter §5). As such, we will equate the idea of proving a

statement as true with it having a non-zero multiplicity and is contained in the

bag that the R-expr represents. Similarly, we will define false statements as those

that have zero multiplicity and are not contained in the bag. To make this more

concrete, we can say that for the rewrite system to prove an R-expr R that does not

contain free variables (vars(R) = /0)222 true, there must exist a sequence of rewrites

such that R→*1+S, for some S.223 Similarly, for the system to prove an R-expr R false,

there must exist a sequence of rewrites R→*0 for it to be proven false.

15.1.1 Soundness of Simplify

We claim that our rewrite system is sound in that all R-exprs that are rewri�en

(and can be rewri�en) into the form 1+S, for some S, have a multiplicity greater

than 1.

Proof: Our rewrite rules given in chapter §6 are semantics preserving with

respect to the semantic interpretation given in chapter §5. Hence, any R-expr R

that is rewri�en into the form 1+S must be semantically equivalent and therefore

have a multiplicity greater than 1 and be considered true.224 ■

222Allowing free variables in the R-expr requires more work to concisely define this. For example,
the R-expr(X=1) has a free variable X, but cannot rewrite as 1 or 0. Hence, it is odd to think of this
of(X=1) as proving X. Rather, by focusing on only the case without free variables, we do not have
to define if(X=1) is true or false. This restriction is not an issue though, as one can simply project
out all free variables, in which case it can be rewri�en as a multiplicity. E.g. proj(X,(X=1))→1.
223Writing theR-expr as1+S allows for this to bemore general, in that it canmatch all multiplicities
≥ 1, and matches the rewrite rule for if-expressions (rewrite rule 63). Alternately, we could write
this as if(R,1,0), which would guarantee that this R-expr is rewri�en as 1 or 0.
224The rewrites in chapter §6 have been checked by hand to match the semantic definitions in

chapter §5. Furthermore, the rewrites in the implementations in chapters 8 and 11 have also been
checked by hand. Checking rewrites and their implementation by hand does not guarantee that the
rewrites are bug-free. Any rewrite, or implementation of a rewrite, that is not semantic preserving
is a bug.

263

fermat_was_right →
if(proj(A,proj(B,proj(C proj(N,proj(Aval,proj(BVal,proj(CVal,

power(A, N, Aval)*power(B, N, BVal)*power(C, N, CVal)*

add(AVal, BVal, CVal)*int(A)*int(B)*int(C)*int(N)*

lessthan(2, N)*lessthan(0, A)*lessthan(0, B)*lessthan(0, C)

))))))), 0, 1).

Figure 15-1. R-exprs are su�iciently powerful to express general mathematical
expressions such as Fermat’s last theorem shown here (I.e., there does not exist
positive integers a,b,c,n where n ≥ 3 such that an + bn = cn). While this Fer-
mat’s theorem was proven true [148], hence this R-expr can be rewri�en as 1, it is
unrealistic to include the necessary rewrites to solve this R-expr.

15.1.2 R-exprs Rewrites are Incomplete

Our rewrite system is not complete. Given the definitions given previously, for a

rewrite system to be complete, any true statement that can be expressed must be

rewritable into the form 1+S, for some S. In other words, there exists a R-expr R

that is semantically equivalent to 1+S for some S, but there are no rewrites that can

rewrite R into the form 1+S.

Proof: To prove that R-exprs are not complete, we can simply demonstrate an

R-expr that is equivalent to 1, but cannot be rewri�en as 1. Figure 15-1 shows

an R-expr that encodes Fermat’s last theorem, which was proven true in [148].

Hence, the fermat_was_right R-expr in figure 15-1 is semantically equivalent to the

R-expr 1. However, our rewrite system does not include any rewrites that can

rewrite the fermat_was_right R-expr. (The proof of Fermat’s last theorem requires

mathematical properties that we currently do not have implemented for R-exprs).

The fact that there exists an R-expr that cannot be rewri�en shows that the rewrite

system is incomplete. ■

Admi�edly, users of the Dyna system are likely not expecting it to automatically

prove Fermat’s last theorem, hence this is not an informative result.

More generally, we can say that any sound rewriting system for R-exprs cannot

be complete in the sense that any two semantically equivalent R-exprs can be

non-deterministically rewri�en into the same form. (In other words, for some pair

of R-exprs R,R' with JRKE = JR'KE , there is no S such that R→∗S and R'→∗S.) The

264

reason is that R-exprs are powerful enough to express any first-order statement

about arithmetic. Hence, R-exprs are subject to Gödel’s incompleteness theorem,

which ensures that there exists an R-expr that is a true, i.e., semantically equivalent

to 1, yet cannot be rewri�en as 1.

15.1.2.1 Completeness on Datalog Subset

While R-expr and their rewrites are incomplete, we can prove that there are some

subsets of the Dyna language that are complete.

First, I will prove that the Datalog subset of Dyna is complete when using the

appropriate memoization policy.

Proof: First, let us briefly recall how Datalog works, which was previously

discussed in section §3.1.2. Datalog memoizes all terms that have been proven true.

Rules in a Datalog program combine terms that have been proven to deduce new

terms that are also true. Furthermore, for a program to be a valid Datalog program,

it must be stratified when aggregation or negation is used. This means that we do

not have to worry about cyclic programs, which require the guessing mechanism

from section §10.5. Finally, Datalog terms only contain ground values (e.g. the

term foo[1,2], but not bar[X,X]). This means that all of the terms can be easily

enumerated by enumerating the ground assignments to variables in the term.

To emulate the memoize everything behavior, we can use the $memo policy that

returns "null" for all user-defined terms.225 This works because we are only con-

cerned with the Datalog subset, which only proves ground terms. This means that

the memo tables only consist of disjunctions of ground assignments to the variables

present on a term.

For example, if we have $memo(foo[X,Y]) = "null". as the memoization policy

for a Datalog program. The foo/2 memo will look something like (X=1)*(Y=2)*

(Result=true)+(X=7)*(Y=3)*(Result=true) +· · ·+(X=11)*(Y="hello")*(Result=true) ,

225This would be equivalent to defining $memo(X) = "null". However, due to limitations in
the $memo control mechanism, each user-defined term must be specified with its own $memo(·)
policy. Hence, this would require specifying multiple $memo policies like:
$memo(foo[X,Y]) = "null".

$memo(bar[X,Y,Z]) = "null".

265

where all of the values to X and Y are known ground values, and therefore enumerable.226

Because Datalog rules combine the purely ground terms together by looping

over the ground bindings to variables, we will exactly replicate this behavior using

our standard execution procedure. Furthermore, Datalog programs are stratified227

when it comes to aggregation and negation, which ensures that the set of terms that

are true and memoized will converge. Hence, Dyna’s execution exactly matches

what happens in a typical Datalog implementation.

Because our execution exactly replicates Datalog (when given an appropriate

memoization policy), we can claim that our implementation is complete in the

same way that Datalog inference is complete. ■

15.1.2.2 Emulating SLD Resolution

Selective Linear Definite (SLD) resolution, as defined in Foundations of Logic

Programming by Lloyd [101], is a technique to implement resolution on horn

clauses.228 SLD resolution performs unification between non-recursive structural

terms that can contain variables. For example, if the terms foo[X,bar[X,Y]] and

foo[A,bar[B,B]] are unified together, then the variable X, Y and Z will all be unified

together (X=Y=Z, hence foo[X,bar[X,X]]). SLD resolution also includes an occurs

check which ensures that terms recursive terms are identified as impossible. For

example, the unification between f[X,X] and f[Y,g[Y]] would fail as this would

result in Y=g[Y], and there is no value of Y that will make this expression true.

Horn clauses228 that are true can be forward chained to identify all terms that

are true. This is the same sort of forward chaining that we have in a Datalog

program without negation or aggregation. As such, SLD resolution is known to be

sound and complete for horn clauses [101].

To see an example of SLD resolution, consider the following program.

767 a(f[X]).

226In fact, memos of this form will be e�iciently handled by the prefix-tries (section §11.6.1) and
iterators (section §11.7).
227There is nothing in Dyna that checks that a program is stratified and enforces stratification.

Hence, I am assuming that the program is already in the Datalog subset and is correctly stratified,
meaning it does not contain cycles that involve negation or aggregation.
228 Horn clauses are sometimes referred to as Pure-Prolog. The term Pure-Prolog is not used

consistently across all publications, so I will avoid the term Pure-Prolog.

266

768 a(g[I,J]).

769 b(Y,Z) :- a(Y).

770 c(W) :- c(W).

First SLD resolution will deduce the terms a[f[X]] and a[g[I,J]] are true from

lines 767 and 768 as there are no conditions for these horn clauses. SLD resolution

will then use a[f[X]] to forward chain into the rule on line 769, where the variable

Y is unified with the structure f[X]. This causes SLD resolution to deduce the term

b[f[X],Z] is true. Next, SLD resolution forward chains a[g[I,J]], which causes

b[g[I,J],Z] to be deduced as true as well. Now the terms that have been proven

true are a[f[X]], a[g[I,J]], b[f[X],Z], and b[g[I,J],Z]. SLD resolution will not

stop running as it has reached a fixed point where all possible terms have been

deduced as true. Note that c[W] is never deduced as true, as there is no base case

for c[W] to get it started.

Emulating SLD with R-exprs: SLD resolution can be emulated using R-exprs

and our rewrites. However, it requires a slightly di�erent control strategy from the

one discussed in chapter §8.

First, observe that we already have the necessary rewrites for unification and

the occurs check (section §6.1.1). Second, our memo table is capable of memoiz-

ing structural terms with variables like foo[X,bar[X,Y]] by memoizing an R-expr

containing structural unifications.

However, there is a slight di�erence from what SLD memoizes and uses to

forward chain. Observe that in the previous SLD example, the terms a[f[X]] and

a[g[I,J]] were each memoized individually and forward chained individually. Es-

sentially, the disjunction between the di�erent ways that X can be satisfied in a(X)

is handled directly by the SLD algorithm. In the case of R-exprs, we instead would

create a single memo for all of a(X), and then use the disjunction (section §5.2.2.5)

to represent the di�erent ways that X can be satisfied. In other words, when evalu-

ating line 769 and expanding a(Y) using R-exprs, we are going to have an R-expr

like b(Y,Z)→(true=exist(true, proj(X,(Y=f[X]))+ proj(I,proj(J,(Y=g[I,J]))))).

In other words, because of our desire to make factored R-exprs to work around

aggregation (section §8.2.3.1), we do not end up expanding out the terms entirely

as SLD resolution does.

To emulate SLD resolution using R-exprs. We could instead consider a system

that uses the distributive rewrite to expand R-exprs rather than factor them (e.g.

267

Q*(R+S)
22
−→Q*R + Q*S). In this case, we will have that each R-expr would only repre-

sent a single conjunctive structural term with variables rather than the factored

form that we currently have.

As a secondary issue, we also have aggregation in the program that needs to be

removed before the distributive rewrite can be used to fully expand the R-expr. In

principle, nested exists aggregators could be removed.229 E.g. (true=exists(true,

Q*R*(true=exists(true, S1+S2))))
98
−→ (true=exists(true, Q*R*(S1+S2))) .230

In conclusion, if aggregators were removed from the R-expr, and the distributive

rewrite was used to expand R-exprs, rather than factor, then our memoization

mechanism is su�iciently powerful to memoize representations of structured terms

with variables, and our unification rewrites are the same as those used by SLD

resolution. The system does not perform rewrites in this way because of our desire

to work around aggregation (a frequent operation in Dyna programs).

15.2 Dyna is Turing Complete

Dyna is Turing complete. This should not be surprising as Prolog is known to be

Turing complete, and Dyna is a superset of Prolog. Proving Dyna is Turing complete

is useful as it shows that all computable functions can be computed using Dyna

using some program. However, being Turing complete does not mean that all ways

in which a function can be represented will result in Dyna being able to compute

using the result of the function. Hence, showing that Dyna is Turing complete

does not contradict the previous proof that R-exprs and rewrites on R-exprs are

incomplete.

Proof: Proving Turing completeness can be done by reducing231 from a known

universal Turing machine into Dyna. I have chosen to use Rule-110232, as it has

229The(true=exists(true,R)) aggregator essentially forces the multiplicity of R to 1. Hence,
as long as there is an exists aggregator at the top of the R-expr, the entire R-expr will have the
same semantics.
230Currently rewrite rule 98 is not included in the implementation.
231This kind of reduction is the same kind of reductions that one sees with NP-complete proofs

using a reduction from SAT.
232https://en.wikipedia.org/wiki/Rule_110

268

https://en.wikipedia.org/wiki/Rule_110

been proven to be Turing complete [40]233 and is considered one of the simplest

known Turing complete systems. The implementation of Rule-110 in Dyna is shown

on lines 771 to 786:

771 turing_machine_step([1,1,1|X]) = [0|turing_machine_step([1,1|X])].

772 turing_machine_step([1,1,0|X]) = [1|turing_machine_step([1,0|X])].

773 turing_machine_step([1,0,1|X]) = [1|turing_machine_step([0,1|X])].

774 turing_machine_step([1,0,0|X]) = [0|turing_machine_step([0,0|X])].

775 turing_machine_step([0,1,1|X]) = [1|turing_machine_step([1,1|X])].

776 turing_machine_step([0,1,0|X]) = [1|turing_machine_step([1,0|X])].

777 turing_machine_step([0,0,1|X]) = [1|turing_machine_step([0,1|X])].

778 turing_machine_step([0,0,0|X]) = [0|turing_machine_step([0,0|X])].

779 turing_machine_step([A,B]) = [A,B].

780 turing_machine_step([A]) = [A].

781 turing_machine_step([]) = [].

782

783 turing_machine(X) := turing_machine(turing_machine_step(X)).

784 turing_machine(X) := X for X = turing_machine_step(X). % Turing

machine has reached a fixed point

785

786 final_output = turing_machine(start_state).

■

Rule-110 is a cellular automaton that uses a one-dimensional array consisting of

0s and 1s. The array is progressively rewri�en using a pa�ern of 3 bits and then

shi�ing over in the array by 1 position. Rule 110 is applied repeatedly using line 783

until it reaches a final state where the Turing machine stops changing, which is

identified by line 784.

Observe that this program depends on recursion (line 783). Recursion is the only

way in which a programmer can represent an unbounded computation (such as a

Turing machine), which I will prove next.

233The proof that Rule-110 is Turing complete requires several very dense math papers.

269

15.3 Termination of SimplifyNormalize on aBounded
Size R-expr

A potential complication when designing a rewrite rule system is that the rewrite

rules could oscillate unproductively, causing a terminating program to become non-

terminating. We claim that all terminating programs will terminate when rewri�en

by SimplifyNormalize, and that the resulting R-expr will be “simple”, according to

some definition of “simple”. This ensures that 1) we are doing something useful

when rewriting (hence the result will be simple), and 2) that we are not accidentally

causing non-termination.234

First, the only way one can write a Dyna program that does not terminate

is either through the use of a bad memoization policy (chapter §10 and section

§2.5), or through the use of recursion to write an unbounded loop. The function

SimplifyNormalize is not directly involved with memoization; hence, memoization

need not be considered in this proof. Therefore, for this proof to apply, we only

need to ensure that there is no unbounded recursion, which means that the R-expr

being rewri�en by SimplifyNormalize is bounded in size.

15.3.1 Making an R-expr Bounded in Size

In general, R-exprs are not bounded in size. Hence, to make the proof in the next

section go through, we first need to ensure that the R-expr that is being rewri�en

is bounded in size so that the proof will apply. To do this, we “modify” the R-expr

to ensure that the R-expr is bounded in size.

The way this is done is by tracking the stack depth235 of user-defined rewrites.

This is done by modifying the presentation from section §6.7 so that there is a stack

depth counter. Here, I denote the stack depth as a superscript on the user-defined

R-expr types and modify rewrite rule 74 so that the counter is incremented for all

internal user-defined R-exprs.

234This proof does not prove that this will terminate with the correct runtime, or that it will run
“fast”.

235We do not really have a call stack in the traditional sense, as we are expanding the R-expr out
using rewrite rule 74, but we can think of the stack depth as corresponding to the depth at which a
given call would appear if the program was executed under a traditional programming language.

270

787 factorial(X) :=

788 factorial(X-1)*X.

789 factorial(0) := 1.

(a) Dyna

proj(Tmp1,

times(100,Tmp1,Result)*

proj(Tmp2,

times(99,Tmp2,Tmp1)*

proj(Tmp3,

times(98,Tmp3,Tmp2)*

factorial4(97, Tmp3))))

(b) The factorial R-expr expanded up to K = 4 a�er
some rewrites are applied.

Figure 15-2. Recursive Dyna program which requires many steps of recursion to
get a “useful” result. If the program’s expansion is cut short, with K = 4, then the
resulting R-expr is still correct, though not useful as in (b).

fk(X1,. . .,Xn)
74
−→ ·· ·*fk+1(· · ·)*· · ·*gk+1(· · ·)*· · · if k < K

Now the rewrite rule 74 rule only runs if the stack depth is less than some max-

stack-depth, denoted here as K.

The approach of bounding the number of expansions of recursive user-defined

R-exprs is not without consequences. For example, if we set the stack limit too low,

then we can end up with R-exprs that are not useful to the user. Figure 15-2 shows

one such instance, where the factorial program stops expanding before reaching its

base case. The R-expr that would be returned to the user’s query would be partially

expanded but does not return the desired numerical result of factorial.

Similarly, limiting the stack depth does not necessarily result in a small R-expr

or a limited amount of memory consumed (as would commonly happen in a

procedural stack-based programming language). For example, figure 15-3 shows a

Dyna program that would create an exponential 3K-sized R-expr when expanded

to depth K.

236For example, f(X-1)*f(X-1)*f(X-1) could rewri�en into Y=f(X-1), Y*Y*Y. In which case
f(X-1) would only be called once, avoiding the exponential-sized expansion.

271

790 f(X) := f(X-1)*f(X-1)*f(X-1).

791 f(0) := 2.

Figure 15-3. Assuming that no rewrites are done to combine f(X-1) on
line 790,236then this program will expand to an exponential 3K-sized R-expr. Hence,
the stack depth does not mean small program, or limited memory etc.

15.3.2 Outline: How to Prove Termination

To prove that SimplifyNormalize terminates and Simplify reaches a fixed-point,

we prove that there cannot be an infinite sequence of directional rewrites on a

bounded size R-expr. To do this, we define a set of energies E such that there is no

infinite descending sequence, and we define an energy function | · | : R→ E such

that

|Simplify(R)| ≤ |R|

and

(Simplify(R) ̸= R) =⇒ (|Simplify(R)|< |R|) .

Together, these properties mean that Simplify will either return the R-expr un-

modified, meaning no rewrites were applied, or if it returns a di�erent R-expr,

where there were one or more rewrites applied to, it will have decreased the energy.

Because there is no infinite descending sequence in E, this means that repeated

applications of Simplify must reach a fixed point in a finite number of steps.

What is le� to complete this proof is to define | · | : R→ E and show that the

rewrites defined in chapter §6 will individually decrease the energy of the R-expr.

This proof is structured as follows. First, I will define | · |core : R→ N≥1 that is

the energy for all R-expr types excluding built-in R-exprs (section §5.2.2.3). Second,

in section §15.3.4, I will define a notion of energy specifically for built-ins. Finally

in section §15.3.5, I will define | · | : R→ E which applies to all R-exprs.

15.3.3 Construction of “Core” Energy

First, we define | · |core : R→ N≥1 as the energy for all R-exprs except for built-in

R-expr types (section §5.2.2.3). The reason built-ins are excluded for now is that the

rewrites on built-ins can be extended. This can be done by defining new rewrite

272

rules or by incorporating existing so�ware libraries to solve conjunctions of built-in

constraints (such as a linear programming solver or an SMT solver, section §16.8).

Non-recursive: Non-recursive R-exprs have energies defined as follows:

1. |M|core= 1—Multiplicities are a base case of theR-expr language as they cannot

be rewri�en further. They take on the smallest possible energy regardless of

the value of M ∈M.

2. |(X=G) |core = 2 where G ∈ G — Unification of a variable with a constant has

energy 2 regardless of the value of G. In the case where the unification with a

constant is redundant, it is rewri�en as a multiplicity of 1, with an energy of 1.

Hence, this decreases the energy.

3. |(X=Y) |core = 3+

{

0 X ≺ Y

1 X ≻ Y
where X,Y ∈ Ṽ — With two variables in a unifica-

tion R-expr. One of the variables could is bound with a constant value, the

energy will decrease. For example, |(X=Y) |core > |(X=7) |core, where this rewrite

could presumably happen as a result of some other R-expr determining the

value of Y. E.g. (Y=7)*(X=Y)
5
−→ (Y=7)*(X=7) . To define the energy in the case

that variables are reordered, there is an arbitrarily chosen order ≺ which

defines what variable should appear first in the unification R-expr.

4. |(X=f[U1 , · · · ,Un])|core = 3m+ 3 — Unification with a structured term that

contains variables is assigned 3m+3 where m is the number of free variables

in the R-expr. The reason we need to track the number of variables is that

propagating a value into these R-exprs must decrease the energy of the overall

R-expr (rewrite rule 5). For example: (X=9)*(Y=f[X,Z]) → (X=9)*(Y=f[9,Z]) .

Recursive: Recursive R-exprs have energies defined as follows:

5. |R*S|core=|R|core + |S|core — Conjunctive R-exprs energies is defined as the sum

of their sub-R-exprs. This means that any reduction in the energy of R or S

will reduce the energy of the overall R-expr.

Furthermore, given that all R-exprs have a strictly positive energy, this means

that removing a conjunct and unneeded constraints will reduce the energy.

For example, rewrite rule 12 will multiply multiplicities, e.g. 2*3
12
−→ 6, which

takes this R-expr from an energy of 2 to 1.

273

6. |R1+R2+· · ·+Rn|core= 2|R1 + R2 + · · · + Rn|core — Disjunctive R-exprs are raised to

a power of 2. This ensures that nested R-exprs are more expensive than R-exprs

which are not nested. Hence, the energy of an R-expr is reduced when common

sub-R-exprs are factored out.

Note that the presentation of disjunction presented here assumes a n-arity

disjunction and not a recursively nested binary disjunction. However, the

definition can be binarized by matching against the nested sub-R-exprs.237

7. |proj(X, R)|core=2|R|core — Projected R-exprs are also nested. During simplifi-

cation, we a�empt to factor out expressions as much as possible; this means

that more deeply nested sub-R-exprs will have higher energy. For example:

|proj(X, R*S)|core>|R*proj(X, S)|core.

Additionally, note that unlike structural unification (item 4), we do not have

to check if X is a variable or a ground value. The reason is that if X ∈ G, then

we can eliminate the projection.

8. |if(Q, R, S)|core=|Q|core+|R|core+|S|core— if-expressions have an energywhich

is the sum of the nested expressions. The if-expressions are typically handled

by first rewriting Q until it can be determined if it is rewri�en as 0 or as a

non-zero multiplicity. Once the if-expression is determined to be true or

false, it is rewri�en as either R or S (rewrite rules 63 and 64). Thus, the energy

of this expression needs to be higher than R or S. Additionally, rewrites can

be performed directly on R or S for the purposes of making the R-expr more

e�icient (e.g., as in the case of memoization chapter §10). When this happens,

the energy of the if-expression needs to still decrease, regardless if we rewrite

R or S.238

237The binarised definition for disjunctions can be wri�en as:

|R +S|core = 2∧
({

log2 |R|core if Rmatches A+B
|R|core otherwise

}

+

{
log2 |S|core if Smatches A+B
|S|core otherwise

})

This definition works by matching if the nested expression is also a disjunction and undoing the

2|R|core operation via log2.
238For the if-expression, an energy of |Q|core+max(|R|core , |S|core) would not work, as if we have
|R|core>|S|core, and rewrites are performed on S, then the energy of the if-expression would not
decrease.

274

Bidirectional Rewrites: Observe that conjunctions, disjunctions, and pro-

jections have bidirectional R-exprs that are unproductive. By unproductive, I mean

that a rewrite is only used to rearrange the R-expr, and does not result in any

meaningful change or decrease in energy. For example, the commutativity rewrites

on conjunctions and disjunctions swap the order in which two sub-R-exprs are

represented: e.g. R*S
19
←→S*R. For these rewrite rules 18 to 21 and 40, we do not

actually use them and instead depend on the context C to identify the necessary

conjunctions between R-exprs when rewriting; therefore, we do not rearrange the

R-expr explicitly.

Some bidirectional rewrite rules are useful, though. For example, the distribu-

tivity rewrite can create factored R-exprs from a disjunction (R*S+R*Q
22
−→R*(S+Q)).

These kinds of bidirectional rewrites are applied explicitly in a uni-directional man-

ner to create more factored R-exprs and used implicitly via the context C to handle

the “expanding out” direction of the rewrite (rewrite rules 22, 38 and 39, also recall

section §8.2.3.1).

Aggregation: Aggregation requires a bit more care in how we define en-

ergy. Recall that we want to split the aggregation into smaller R-exprs when it

is an aggregation over a disjunction (e.g. (A=sum(X,R+S))), so that each disjunct

can be aggregated independently (rewrite rule 50). To accomplish this, we had

to introduce aggregators that have a disjunction with (X=agg_null) to suppress

the behavior of rewrite rule 48 which would cause it to be rewri�en as 0 (e.g.

(A=sum(X,(X=agg_null)+R)) , see section §6.5.1 for the complete discussion). The

reason we chose this representation for the aggregator R-expr is that it makes it

clear what the required behavior is from an aggregator when handing a disjunction.

However, this(X=agg_null) does not behave like a disjunction but rather a di�erent

kind of behavior of the aggregator. Hence, for the purposes of defining the energy

of an aggregator, we are going to include (X=agg_null) as part of the aggregator

instead of as a nested disjunction.239

9. |(A=sum(X,R)) |core = |(A=sum(X,(X=agg_null)+R))*not_equal(A,agg_null) |core
+1 if (R not match (X=agg_null)+S) — The “normal” aggregator is defined

in terms of (A=sum(X,(X=agg_null)+R)) , which contains the (X=agg_null) dis-

239In the implementation, (X=agg_null) is tracked as a boolean flag on the aggregator class
instead of as a disjunction in the aggregator’s body. See footnote 94 in section §6.5.1.

275

junction, which suppresses rewrite rule 48. The reason for this energy definition

is that we can think of this as handling the first part of rewrite rule 50, where

a constraint not_equal(A,agg_null) is added to the R-expr to ensure that the

case where R is 0 is handled correctly. This looks something like rewrite rule 99,

and we can observe that this rewrite decreases the energy of the R-expr.

(A=sum(X,R+S))
99
−→ (A=sum(X,(X=agg_null)+R+S))*not_equal(X,agg_null)

10. |(A=sum(X,(X=agg_null)+R)) |core=
(2·|R|core)2, where the le� superscript denotes

tetration240 — Aggregation with (X=agg_null) follows the same basic idea of

projection and disjunction in that more deeply nested sub-R-exprs will have

a higher energy. As such, “solving” an aggregator, either by determining the

value returned by an aggregator (rewrite rules 49, 51, 55 and 56) or spli�ing

an aggregator into aggregations over small R-exprs (rewrite rules 50 and 53)

will decrease the energy of the R-expr. In this case, we only have to concern

ourselves with rewrite rule 53, as the other rewrites for aggregators either

factor an R-expr out, which will obviously decrease the energy, or solve the

aggregator without having to deal with any intermediate states.

A=sum(X, (X=agg_null)+R+S)
53
−→ proj(B,proj(C,

(B=sum(X,(X=agg_null)+R))

* (C=sum(X,(X=agg_null)+S))

* plus(B,C,A)))

if R ̸=(X=agg_null) and S ̸=(X=agg_null)

Looking at rewrite rule 53, we can observe that there are two nested projections

and that there are two nested aggregators. In other words, we need:

∣
∣
∣
∣
∣
∣

(A=sum(X,

(X=agg_null)

+R+S))

∣
∣
∣
∣
∣
∣
core

> 2∧



2∧





|(B=sum(X,(X=agg_null)+R)) |core+
|(C=sum(X,(X=agg_null)+S)) |core+
|plus(B,C,A)|core







 .

This is what the energy will be once we expand rewrite rule 53 with two

additional projections.

240For example, 3a = aaa
. The notation and the term tetration are due to Rucker [115]:

na
def
=

{
1 if n = 0

a(
n−1a) otherwise

276

To make this work, first observe for a n-way spli�able disjunction that

|R1 + R2 + · · · + Rn|core ≥ 2n ,

by the definition of the disjunction’s energy. Therefore, the energy of a disjunc-

tion is an upper bound on the number of disjunctive branches that will need

to be handled by the aggregator. In other words, the system could potentially

introduce up to n projections and intermediate variables to handle aggregation

over the disjuncts R1 to Rn. Therefore, the energy of the aggregator’s body is

an upper bound241 on the number of times that rewrite rule 53 can be applied,

and the number of projections that will be introduced. To handle this, we use

tetration240 which takes a number to a power multiple times. In performing

rewrite rule 53, other R-exprs are added in (such as plus(B,C,A) above), those

are covered by multiplying |R| by 2, which gives the whole energy for the

aggregator as (2·|R|core)2.

User-defined R-exprs

The user-defined R-expr that guarantees termination has a stack depth limit K

(introduced in section §15.3.1) that limits the number of times that a user-defined

R-expr will be expanded. This limited K allows us to define the energy of user-

defined R-exprs as a finite number.

11.
∣
∣fk(X1, . . .,Xn)

∣
∣
core

=m+1+

{ ∣
∣
∣R

k+1
f

∣
∣
∣
core

if k < K

0 otherwise
—User-definedR-exprs’

energy is defined both in terms of the number of free variables m and in terms

of the energy of the expanded R-expr Rk+1
f . The reason for tracking the number

of free variables is the same as with structured terms, if we propagate an

assignment to a variable, we need to be able to record in the energy that some

useful work was done in rewriting the R-expr.

The recursive part of the energy checks the stack depth k of the user’s R-expr.

When k = K, this means that the user’s R-expr is expanded as far as it will be

expanded. Therefore, rewrite rule 74 will no longer run. We can now break the

recursive definition of energy and replace that part with the value 0.

241This is very loose upper bound.

277

15.3.4 Energy for Built-in R-exprs

To define the energy for built-ins, we construct a “pluggable” definition of energy

that is dependent on the rewrites provided on the built-ins.

To do this, we introduce the function E(·) : ⟅R⟆→ N which is defined by the

library of rewrites included in our system, implying that the rewrites on built-

ins will also terminate.242 The function E(·) maps from a bag—not an R-expr—of

conjunctive, non-recursive R-exprs to a finite natural number that is the upper

bound on the number of rewriting steps which can be performed against that bag

of constraints.

The way that we use E(·) is that we will gather built-ins from the R-expr and

use E(·) to determine what might happen. For example, if we start with the R-expr

(X=1)*plus(X,2,Z)+lessthan(Z,W) , then it is converted into the bag

⟅(X=1)@1,plus(X,2,Z)@1,lessthan(Z,W)@1⟆, (15.1)

and passed to the function E(·). In this case, the function E(·) returns that the

energy is 3. This follows from the longest sequence of rewrites being:

(X=1)*plus(X,2,Z)*lessthan(Z,W)
5
−→ (15.2)

(X=1)*plus(1,2,Z)*lessthan(Z,W)
28
−→ (15.3)

(X=1)*(Z=3)*lessthan(Z,W)
5
−→ (15.4)

(X=1)*(Z=3)*lessthan(3,W) . (15.5)

Note that E(·) operates on the bag of constraints, not an R-expr (which contains

disjunction, conjunctions, projections, and aggregations). As such, if we have an

R-expr with a disjunction like (X=1)+plus(X,2,Z)+lessthan(Z,W) , then the bag of

constraints contained in the R-expr is exactly the same as equation (15.1) above.

Additionally, we define that all built-ins will have an energy of 1 under the core

energy definition. E.g. |lessthan(X,Y)|core = 1.

Why we need E(·)

As stated above, we are constructing a proof of termination independent of

242As an example if we add an external linear programming solver as a library, there would a E(·)
function that is associated with the linear programming library.

278

the built-in rewrites included. The reason for this is two-fold. First, we do not

know the “complete set” of all built-in rewrites, and second, proving termination of

built-in requires theories outside of what we are proving here. Hence, we represent

the number of potential steps needed to rewrite a bag of built-ins using the E(·)

function.

To see this, consider rewrite rule 34 which combines two lessthan constraints

together to infer new lessthan constraints:

lessthan(A,B)*lessthan(B,C)*lessthan(C,D)
34
−→ (15.6)

(
lessthan(A,B)*lessthan(B,C)*lessthan(C,D)*

lessthan(A,C)

)

34
−→ (15.7)

(
lessthan(A,B)*lessthan(B,C)*lessthan(C,D)*

lessthan(A,C)*lessthan(B,D)

)

34
−→ (15.8)

(
lessthan(A,B)*lessthan(B,C)*lessthan(C,D)*

lessthan(A,C)*lessthan(B,D)*lessthan(A,D)

)

(15.9)

Proving termination of rewrite rule 34 requires a theory about lessthan and how

many lessthan constraints can be inferred. Furthermore, we need to be able to

“understand” the R-expr in that the energy of equation (15.6) must be greater than

the energy of equations (15.7), (15.8) and (15.9) despite the fact that equation (15.6)

has the smallest R-expr representation. Hence, energy is not a purely syntactic

property of the R-expr. This complexity for built-ins is punted into E(·).

15.3.5 Energy for all R-exprs

Given | · |core as the energy for the core R-exprs and E(·) as the energy for built-in

R-exprs, we need to construct a single definition of the energy | · | that can be used

for all R-exprs at the same time.

To do this, we first need to convert from E(·), which operates on bags of non-

recursive R-exprs, into a representation that operates over R-exprs that includes

disjunctions and aggregation.

To accomplish this, observe that in constructing the energy for an R-expr, we only

need some upper bound—regardless of how loose the upper bound is. Furthermore,

identifying which sub-R-exprs interact with each other is just as di�icult as running

279

Simplify itself. Hence, it would be somewhat complex to determine the interaction

between built-ins. Instead, we will construct an upper bound by considering all

possible interactions which might happen between built-in. This can be done by

summing the E(·) function over all power sets of the sub-R-exprs that are in a given

R-expr.

A power set P(x) is defined as a set of all subsets, or in this case sub-bags of x.

For example if we have the bag ⟅a@2,b@1⟆, the power set is:

P
(

⟅a@2,b@1⟆
)

=
{

⟅⟆,⟅a@1⟆,⟅a@2⟆,⟅b@1⟆,⟅a@1,b@1⟆,⟅a@2,b@1⟆
}

Observe that the power set will contain the bags that correspond to the true

interaction between the built-in R-exprs. Hence, we can be sure that ∑p∈P(R) E(p)

is an upper bound on the energy of the built-in R-exprs.

All together, we can now define the energy of an R-expr Rk as the ordered pair

E= N
2
≥1:

|Rk|
def
=

〈

min
s=0,1,2,...,k

((

∑
p∈P(Rs)

E(p)

)

− (k− s)

)

, |Rk|core

〉

where E lexicographical ordered (equation 15.10 below).

The subscript k represents the number of times that built-ins have been rewri�en.

In other words, R0 is the R-expr before any rewrites have been applied, and R1 is

the R-expr a�er one rewrite on the built-ins, and so on up to the “current” R-expr

Rk. The reason for this “dependency on the previous R-exprs” energy is that new

R-exprs can be inferred, and the size of the power set will increase—as there are

more R-exprs contained in the power set. By using min on all power sets up to Rk,

we ensure that the first value in the pair does not increase when the size of the

power set increases.

The second number in this pair is |R|core as previously defined (section §15.3.3).

This valuewill decrease for all rewrites that do notmodify any of the built-inR-exprs,

such as rearranging the R-expr or creating a more factored R-expr. The value of

|R|core may increase when there is a rewrite performed on a built-in, as previously

shown with equations (15.6) to (15.9). However, every time |R|core increases, it will

correspond with a decrease in the first element of this pair.

280

We can therefore define an ordering on these order pairs as equation (15.10):

⟨a,b⟩< ⟨c,d⟩
def
=

{
a < c if a ̸= c

b < d otherwise
(15.10)

It can also be seen from the construction of this ordered pair that there does not

exist an infinite descending sequence, as both the first and second values in the

tuple are positive natural numbers N≥1.
243

15.3.6 Checking Energy of Rewrites

All of the directional rewrites in chapter §6 have been checked to ensure that

they decrease the energy. With the few notable exceptions that were previously

mentioned in section §15.3.3, the reason a rewrite decreases the energy tends to

be obvious. For example, consider rewrite rule 63 if(1+M,R,S)
63
−→ R. The energy

of |if(1+M,R,S)|core = |1+M|core+ |R|core+ |S|core, which is clearly larger than |R|core.

Furthermore, the definition of energy has that R-exprs that are higher up in the

R-expr (more factored), have a lower energy. This means that rewrites that make

the R-expr more factored will reduce the energy. This matches with the principle

from section §8.2.3 that we will create factored R-exprs to get around the issues of

aggregation.

This concludes the proof that Simplify will decrease the energy of the R-expr

during every step under the assumptions that the R-expr is bounded in size and

the built-ins and rewrites on the built-ins terminate. Therefore, SimplifyNormalize,

which repeatedly invokes Simplify will eventually reach a stopping point when

Simplify has reached a fixed point since the energy cannot decrease forever. ■

Admi�edly, this proof is not useful for proving that SimplifyNormalize termi-

nates in useful amount of time or achieves an optimal asymptotic runtime.

243This could also be represented as an ordinal number ⟨a,b⟩ = ωa + b. Given that we do not
need the “full power” of ordinal numbers, we have chosen to represent this as an ordered pair of
two natural numbers instead of an ordinal number.

281

Chapter 16

Future work

This dissertation represents my work on the Dyna programming language and

the development of the R-expr-based rewrite system. Over the years, our research

group has discussed a number of potential directions for which additional work is

required, and I have additionally thought of a number of potential project directions

on my own. I think one could easily fill ten to twenty person-years adding to the

Dyna system and turning it into a more practical tool for researchers. Here are

some ideas that I think are worthy of consideration as well as brief comments about

how one might go about achieving these ideas.

16.1 Additional Disjunctive R-exprs

As noted in section §11.6.1, there is currently one e�icient disjunctive R-expr kind.

Realistically, there should be many di�erent of e�icient disjunctive kinds for di�er-

ent scenarios (e.g. [120]).

16.1.1 Improvements to the Trie

The current trie implementation has a few limitations which should be addressed.

First, there are no secondary indexes on the trie. This means that if we order the

variables as X and then Y, but want to enumerate the domain of Y using an iterator,

we first need to enumerate all possible values of X.

Second, the order in which variables are stored in the trie should somehow be

282

controllable. Currently, the system just picks the variable order arbitrarily—which is

clearly suboptimal. The first step here would likely be to figure out some annotation

that can be specified by the user about the order and indexes that a trie should

maintain. Then any information collected from the user’s annotation would have

to be tracked and pushed all the way into the e�icient disjunct. This is a li�le

bit harder than it might sound at first. A disjunct does not have a one-to-one

correspondence with a user-defined rule. Hence it can be tricky to track which

disjunct should have what policy.

16.1.2 Dense Numerical Types

Given that our target audience are researchers who write numerical algorithms,

we should really have some way to represent matrices and dense numerical arrays.

Ideally, this would be something that would not require any changes to the user’s

program to use dense array types, though that might be di�icult in practice.

I think the first step towards this would be to define a dense array, matrix, and

tensor types as R-exprs. From there, one could look into either custom syntax or

just defining built-in functions that expose operations on the dense arrays. This

would be akin to building a NumPy [90] like matrix library for Dyna.

792 (def-base-rexpr dense-array-type [:var array-index

793 :var output-value

794 :other pointer-to-dense-array])

Figure 16-1. Theoretical way in which a dense array could be exposed into an
R-expr.

16.1.3 Backed by Something other than Memory

Currently, all disjuncts are over R-exprs and held as structures in memory. There

could realistically be a disjunctive type that represents other sources of data. For

example, there could be an R-expr that reads data from a CSV file or a SQL database.

There are no complications here to overcome in implementing this might be a good

project to give to an undergraduate who wants to get started on the Dyna project.

283

16.2 User Studies

The work in this dissertation focused on the implementation of the Dyna program-

ming language, with the design completed before the start of my Ph.D. back in

2011 [59]. Now that we finally have a working version of Dyna, I think prioritizing

user studies would be beneficial. I think this would be an opportunity to determine

which future work should be prioritized.

As an example, I note that the landscape of ML and AI research and tooling has

shi�ed significantly from when Dyna was initially conceived—with Dyna’s design

predating modern neural networks by at least five years.

16.2.1 Libraries Wri�en in Dyna

Related to the changing landscape of ML/AI research, most researchers are leverag-

ing a large collection of existing so�ware when developing MLmodels. In particular,

neural networks are virtually never wri�en from scratch and instead take advan-

tage of a large collection of pre-existing modules from libraries such as PyTorch

or Tensorflow [4, 23, 111]. If a user were to a�empt the same in Dyna today, they

only have core Dyna operations, which in this case are akin to low-level tensor

manipulations.

I think that developing a useful library of neural techniques or automatic

di�erentiation—which could either be done internally on R-exprs, or externally on

source level Dyna. This would serve as a useful exercise in writing Dyna programs

while simultaneously resulting in something that is useful to other users.

16.2.2 User-Friendliness

The current system is at the level of a research prototype in that it works, but I

think the system’s user-friendliness can still be greatly improved. These projects

are probably at the right level to get an undergraduate started on the Dyna project.

1. Be�er Syntax Errors—Syntax errors currently returned are from the Antlr4 [110]

parser and could be greatly improved.

2. Be�er Semantic Errors—The only warning currently reported to the user is

284

a�empting to use a user-defined term without any rules that define it (which

is represented as multiplicity 0). Other issues, such as type incompatibility

(e.g., int(X)*string(X)→0), should probably also be reported, but it is currently

di�icult to determine if type incompatibility was an error or was intentional.

3. Be�er Display of R-exprs—There is some code for printing R-exprs to the

terminal. I have a�empted to make the printed representation as close to

the representation presented throughout this dissertation, but it is not 100%

perfect. Furthermore, I do not believe that R-exprs are the best presentation

for people who are trying to use the language (rather than understand its

internals). As such, I think it would be worth reconsidering how R-exprs are

presented to the user, possibly designing some R-expr to Dyna translation so

that R-exprs can be presented as Dyna code.

4. The front-end parser currently reports an error if there is more than one

dynabase defined per rule. This restriction could removed by adding additional

transformations in the translation of dynabases to R-exprs, such as those

described in section §13.2.1.

5. Debuggability and Visualization—There is currently no support for debugging

the user’s program. When I encounter issues, I have to drop into the Java

debugger and step through R-expr rewrites—which is not a pleasant experience.

One possible approach to debugging could be to go through the steps of

rewriting that are performed. There is already support in the implementation

for tracking how an R-expr is constructed (when the right command line flags

are passed). So, this might be building a user interface to expose those details.

A second approach could be to build a tool for visualizing the values of di�erent

user-defined rules in the program. This was previously done with Dyna 1.0

with the derivative Dynasty project [62].

6. Visualization and Interactions in Jupyter notebooks [99]—I have defined a

%dyna Jupyter notebook cell/line magic244, which allows for running simple

Dyna programs from Jupyter notebooks. This user experience could also be

improved with be�er visualizations.

244https://ipython.readthedocs.io/en/stable/config/custommagics.html

285

https://ipython.readthedocs.io/en/stable/config/custommagics.html

16.3 More Rewrite Rules

Our implementation currently contains a number of rewrite rules. However, this is

by no means expected to be all possible rewrites. It is reasonable that one could

invent new rewrites which can e�iciently handle di�erent scenarios. There could

also be more rewrite rules that correspond to di�erent mathematical operations.

For example, there could be rewrite rules involving identities of trigonometric

functions.

16.4 Automatic Configuration

Currently, there are a number of di�erent “decisions” that need to be made to

configure how the program runs and can have a significant impact on the program’s

runtime. For example, we already have seen memoization, which is controllable by

$memo and $priority. However, other things, such as variable order and indexing

on disjunctions and variable loop order, should be considered.

Some of these proposed automatic configurations are akin to database query

optimizers. However, controls like $memo are much more complicated, as a bad

policy can cause the system to become inoperable and have consequences outside

of the scope of a single query (section §10.6.2).

I should also note that the automatic algorithm configuration was the central

topic of Tim Vieria’s dissertation [141], in that he explored di�erent ways a program

could be folded to make it more e�icient (chapter §14). Many of the ideas in Tim’s

dissertation should be adaptable to the system presented here.

16.4.1 Automatic Guessing on Cycles

In the current implementation, all memoization decisions are manual. However,

there are a few cases that could be automatically detected and would likely improve

the user experience. One such example is the case of a cyclic program. The system

will detect that a cycle happens and eventually stop expanding the R-expr (section

§15.3.1). However, it does not currently enable memoization automatically.

In the case that a cycle is detected that does not contain memoization, then

286

memoization could be automatically enabled, or a helpful error message could be

reported to the user about how they can fix their program.

16.4.2 Automatic Prioritization of Updates

Prioritization of updates is currently entirely dependent on the user’s declarations. I

believe there is an “easy to exploit” opportunity here to make this process automatic.

The reason is that a bad update prioritization should not cause the system to

accidentally not-terminate in most cases (like in the case of a bad $memo). Hence,

it is “mostly safe” to experiment with di�erent prioritization when the system is

running.

I believe that a possible approach would be to run tasks and track when “priority

inversions” happens. Essentially, the system could detect priority inversions by

tracking when a downstream value was previously computed has to be recomputed.

Amachine learning regressionmodel could be trained to predict numerical priorities

such that no priority inversions will happen. In the case that the program does not

contain a cycle, then this would be akin to using features on the nodes in a graph

to learn a topological ordering. Additional handling might be required in the case

of cycles, though I believe that it might be possible to set up the machine learning

algorithm such that cycles do not change the learned weights of the machine

learning algorithm by having the notifications of priority inversion cancel each

other out.

16.4.3 Automatic Variable Ordering

The variable order used by disjunctive data structures, such as the trie, can have

an impact on the e�iciency of the system. A bad variable ordering should not

cause any issues around non-termination, so it should be safe to explore di�erent

representations.

I am not sure if there is an “e�icient” way in which runtime costs can be associ-

ated with a variable ordering. It is possible that the variable orderings up being

zero-sum, in that improving the runtime of one operation could negatively impact

the runtime of something else. I believe that doing this correctly will require a

reinforcement learning approach, where di�erent orders are experimented with

287

until something satisfactory is found [142].

16.5 Concurrency

Currently, the system is single-threaded. I have tried to design the internal data

structures with the intention of eventually being used in a concurrent, multi-

threaded environment, so hopefully, adding in concurrency is not too much of

a chore. I think that the best approach would be to leave the rewriting done by

Simplify and SimplifyNormalize as single-threaded and instead focus on doing

parallel processing of the pending work on the UpdateQueue (section §10.7). The

system could reasonably process updates in parallel, tracking if a conflict occurs

much like a database. The update operations are not externally observable, so

simple retry logic should be su�icient in most cases.

16.6 The Memoization Update �eue

The UpdateQueue used in the implementation of memoization (section §10.7) is

a priority queue that is controlled by $priority(·) (section §10.8.5). Hence, this

requires O(logN) time to push and pop update operations from this queue, where

N is the number of update messages on the queue. Comparably, a dynamic program

with a predetermined execution order does not require a queue and will avoid this

O(logN) operations. When problems get su�iciently large, this extra O(logN)

overhead might become significant, so figuring out how to eliminate this overhead

may be a good idea.

16.7 GPU Coprocessor

GPUs are very important to modern ML algorithms and are 100% essential to the

implementation of large Neural Networks. I think that there are a few potential

ways that GPU support could be added:

1. Expose existingGPUKernels—There are a number of di�erent GPU kernels that

currently exist. Using existing kernels usually results in the best performance.

288

This could either be done by defining rules that match with the existing GPU

kernels and calling those operations when the program matches an existing

pa�ern. Alternately, one could simply define built-in operations for every

kernel and require that the user manually reference the GPU kernel operations

themselves.

2. Compiling Dyna to custom GPU Kernels—It should be possible to compile

Dyna programs to a GPU. This might want to build on the work done for

the JIT compiler (chapter §12), as it is already a�empting to generate nested

loops over variables’ domains. Some challenges with this approach would be

that the system still allows for unpredictable R-exprs to be returned at various

points while executing. This would mean that the system would either have to

require some limits on what can be represented or somehow support R-exprs

on the GPU.

3. GPU DSL—Dyna has support for implementing DSL in the language (section

§2.10), one could create a GPU DSL which compiles into a custom R-expr type

and defines its own rewrites so that it is integrated with the rest of the system.

4. Develop an explicit matrix type and library of matrix operations that use

a GPU. This would be an extension of the dense numerical types proposed

previously (section §16.1.2).

16.8 External Solvers

Although we can continue to add many features to the R-expr system to expand

the ability of the Dyna programming language, we should also consider that there

exist a number of powerful frameworks and so�ware tools that might be worth

leveraging in the Dyna project. For example, SMT solvers are able to e�iciently

solve SAT-like problems that require searching through possible assignments [47,

48, 113]. Being specially designed for a “more limited” problem formalism than

Dyna, their implementation is much more specialized than we would be able to

realistically emulate with R-exprs. Additionally, there are algebra systems designed

to solve formulas, such as Mathematica and SymPy, both of which have a very

289

large collection of algebra rules [103, 150].245

Integrating external solvers into Dyna could be integrated as an external library

(as suggested in section §2.10.1 with an example of a linear programming module)

or as custom rewrite rules against R-exprs.

16.9 Advanced Update Propagation

The updates of memoized values are currently handled by recomputation of the

original R-expr. While this is su�icient for the small programs with which we are

experimenting with currently, in the future, it might be beneficial if updates could

be aware of the values and kinds of updates that are being propagated through the

system.

For example, suppose that we have that a(I,J) is representing a matrix, and

there is a rank-1 update to the matrix. A rank-1 update could potentially modify

all entries in the matrix a(I,J). However, knowing that a(I,J) received a rank-

1 update could allow for more asymptotically e�icient computation to be used

downstream.

16.10 Automatic Runtime Analysis and Folding of
Programs

This was part of Tim Vieira’s dissertation [141]. However, that work was not done

using the R-expr formalism, and the work to integrate these two bodies of work

has not been started. Chapter §14 discussed how folding can be done on R-exprs,

which is critical for adapting Tim’s dissertation work.

16.11 Improved Context C

The context C currently uses a hash-map to track the current value assigned to

variables. This means that every time that matcher preconditions such as :ground

or :free are evaluated, or when the get-value function is called, the system

245https://www.wolfram.com/engine/

290

https://www.wolfram.com/engine/

consult the hash-map (section §11.5.3). Hence, the context and the hash-maps that

are used in its implementation have the potential to become a major bo�leneck.

Currently, the hash-map used is the default Clojure hash-map. It is possible that

simply replacing the hash-map with another hash-map implementation that is

more e�icient could improve the runtime.

As a more long term solution, redesigning the get-value-of-variable mechanism

such that there are as few memory access operations as possible and no hard-to-

predict branches would probably be most beneficial. One possible solution to this

might be to make a new class that implements the value type interface, which

supports faster operations than the standard named variable. The context could

then contain an array in addition to the hash-map that would enable retrieving

the relevant value in a single memory access.

291

Chapter 17

Conclusion

This dissertation documents my work in implementing the Dyna language using

R-expr based term rewriting. For the first time in the Dyna 2.0 project, we have an

operational semantics for the language, an approach to implement the language,

and an implementation at the level of the research prototype. A foundation has

been laid for future work on the Dyna project. Although the material in this

dissertation does work, I think there is still a lot of work to do to make it usable.

I believe this will easily occupy the next several years of the Dyna project, and I

hope to see this work continue, as I believe there is great promise.

292

Bibliography

[1] Dyna.org website — logic programming for machine learning. http://dyna.org.

[2] Torchscript – pytorch. https://pytorch.org/docs/stable/jit.html.

[3] 2008. Journal of functional and logic programming (jflp). http://danae.

uni-muenster.de/lehre/kuchen/JFLP/.

[4] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., Kudlur, M., Levenberg, J.,Monga, R.,Moore, S.,Murray, D. G.,
Steiner, B., Tucker, P., Vasudevan, V.,Warden, P.,Wicke, M., Yu, Y., and Zheng, X. 2016.
Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). 265–283.

[5] Aït-Kaci, H. 1999. Warren’s abstract machine: A tutorial reconstruction.

[6] Antoy, S. 2010. Programming with narrowing: A tutorial. Journal of Symbolic Computa-
tion 45, 5, 501 – 522. Symbolic Computation in So�ware Science.

[7] Antoy, S., Echahed, R., and Hanus, M. 2000. A needed narrowing strategy. J. ACM 47, 4
(jul), 776–822.

[8] Antoy, S. and Hanus, M. 2010. Functional logic programming. Commun. ACM 53, 4
(apr), 74–85.

[9] Apt, K. R. and Wallace, M. 2007. Constraint Logic Programming using ECLiPSe. Cam-
bridge University Press.

[10] Arias, E. J. G., Lipton, J., and Mariño, J. 2015. Declarative compilation for constraint
logic programming. In Logic-Based Program Synthesis and Transformation, M. Proie�i
and H. Seki, Eds. Springer International Publishing, Cham, 299–316.

[11] Augustsson, L., Breitner, J., Claessen, K., Jhala, R., Peyton Jones, S., Shivers, O.,
Steele Jr., G. L., and Sweeney, T. 2023. The Verse calculus: A core calculus for determin-
istic functional logic programming. Proc. ACM Program. Lang. 7, ICFP (aug).

293

http://dyna.org
https://pytorch.org/docs/stable/jit.html
http://danae.uni-muenster.de/lehre/kuchen/JFLP/
http://danae.uni-muenster.de/lehre/kuchen/JFLP/

[12] Baader, F. and Nipkow, T. 1998. Term rewriting and all that / Franz Baader and Tobias
Nipkow. Cambridge University Press, Cambridge, U.K. ;.

[13] Baeten, J. C. M., Bergstra, J. A., Klop, J. W., andWeijland, W. P. 1989. Term-rewriting
systems with rule priorities. In Theoretical Computer Science. Vol. 67.

[14] Bainomugisha, E., Carreton, A. L., Cutsem, T. v.,Mostinckx, S., and Meuter, W. d.
2013. A survey on reactive programming. ACM Comput. Surv. 45, 4 (aug).

[15] Barrett, C., Fontaine, P., and Tinelli, C. 2016. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org.

[16] Barrett, C. W., Sebastiani, R., Seshia, S. A., and Tinelli, C. 2009. Satisfiability modulo
theories. In Handbook of Satisfiability, A. Biere, M. Heule, H. van Maaren, and T. Walsh,
Eds. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, 825–885.

[17] Bellia, M. and Occhiuto, M. E. 1993. C-expressions: a variable-free calculus for
equational logic programming. Theoretical Computer Science.

[18] Bellman, R. 1954. The theory of dynamic programming. Bull. Amer. Math. Soc. 60, 6
(11), 503–515.

[19] Bellman, R. 1958. On a routing problem. �arterly of Applied Mathematics 16, 87–90.

[20] Bolz, C. F., Cuni, A., Fijalkowski, M., and Rigo, A. 2009. Tracing the meta-level: Pypy’s
tracing jit compiler. In Proceedings of the 4th Workshop on the Implementation, Compila-
tion, Optimization of Object-Oriented Languages and Programming Systems. ICOOOLPS
’09. Association for Computing Machinery, New York, NY, USA, 18–25.

[21] Bolz, C. F., Leuschel, M., and Rigo, A. 2009. Towards Just-In-Time partial evaluation
of Prolog. In Logic-Based Program Synthesis and Transformation, 19th International
Symposium, LOPSTR 2009, Coimbra, Portugal, September 2009, Revised Selected Papers.

[22] Boulanger, D. and Bruynooghe, M. 1993. Deriving fold/unfold transformations of
logic programs using extended oldt-based abstract interpretation. Journal of Symbolic
Computation 15, 5, 495 – 521.

[23] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D.,
Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. 2018. JAX:
composable transformations of Python+NumPy programs.

[24] Brassel, B., Hanus, M., Peemöller, B., and Reck, F. 2011. Kics2: A new compiler from
curry to haskell. In Proc. of the 20th International Workshop on Functional and (Constraint)
Logic Programming (WFLP 2011). Springer LNCS 6816, 1–18.

294

[25] Burstall, R. M. and Darlington, J. 1977. A transformation system for developing
recursive programs. J. ACM 24, 1 (Jan.), 44–67.

[26] Byrd, W. 2015. Di�erences between minikanren and prolog. http://minikanren.
org/minikanren-and-prolog.html.

[27] Byrd, W. E. 2009. Relational programming in minikanren: Techniques, applications,
and implementations. Ph.D. thesis, USA. AAI3380156.

[28] Byrd, W. E. 2012. minikanren.org. http://miniKanren.org.

[29] Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., and Riddell, A. 2017. Stan: A probabilistic programming
language. Journal of Statistical So�ware, Articles 76, 1.

[30] Ceri, S., Gottlob, G., and Tanca, L. 1989. What you always wanted to know about
Datalog (and never dared to ask). In IEEE Transactions on Knowledge and Data Engineering.
Number 1. 146–166.

[31] Chang, M., Bebenita, M., Yermolovich, A., Gal, A., and Franz, M. 2007. E�icient
just-intime execution of dynamically typed languages via code specialization using
precise runtime type inference.

[32] Cirstea, H., Lenglet, S., and Moreau, P.-E. 2017. Faithful (meta-)encodings of pro-
grammable strategies into term rewriting systems. Logical Methods in Computer Sci-
ence 13, 4:16 (November).

[33] Clavel, M., Durán, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., and
Quesada, J. F. 2002. Maude: Specification and programming in rewriting logic. Theoretical
Computer Science 285, 2, 187–243.

[34] Clavel, M., Eker, S., Lincoln, P., andMeseguer, J. 1996. Principles of maude. Electronic
Notes in Theoretical Computer Science 4, 65–89. RWLW96, First International Workshop
on Rewriting Logic and its Applications.

[35] Clocksin, W. F. and Mellish, C. S. 1984. Programming in Prolog. Springer-Verlag, New
York, NY, USA.

[36] Codd, E. F. 1970. A relational model of data for large shared data banks. Communica-
tions of the ACM 13, 6.

[37] Cohen, W. W., Yang, F., and Mazaitis, K. 2017. Tensorlog: Deep learning meets
probabilistic dbs. CoRR abs/1707.05390.

295

http://minikanren.org/minikanren-and-prolog.html
http://minikanren.org/minikanren-and-prolog.html
http://miniKanren.org

[38] Colmerauer, A. and Roussel, P. 1996. The Birth of Prolog. Association for Computing
Machinery, New York, NY, USA, Chapter 7, 331–367.

[39] Conway, T. C., Henderson, F., and Somogyi, Z. 1995. Code generation for mercury. In
ILPS.

[40] Cook, M. 2004. Universality in elementary cellular automata. Complex Systems 15.

[41] Cook, S. A. 1971. The complexity of theorem-proving procedures. In Proceedings of
the Third Annual ACM Symposium on Theory of Computing. STOC ’71. Association for
Computing Machinery, New York, NY, USA, 151–158.

[42] Cook, W. R. and Lämmel, R. 2011. Tutorial on online partial evaluation. In IFIP Working
Conference on Domain-Specific Languages 2011 (DSL 2011), O. Danvy and C.-C. Shan,
Eds.

[43] da Silva, A. F. and Costa, V. S. 2006. The design and implementation of the yap
compiler: An optimizing compiler for logic programming languages. In Logic Program-
ming, S. Etalle and M. Truszczyński, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg,
461–462.

[44] Date, C. J. 1989. A Guide to the SQL Standard (2nd Ed.). Addison-Wesley Longman
Publishing Co., Inc., USA.

[45] Davis, M., Logemann, G., and Loveland, D. 1962. A machine program for theorem-
proving. Communications of the ACM 5, 7.

[46] Dayal, U., Goodman, N., and Katz, R. H. 1982. An extended relational algebra with
control over duplicate elimination. In Proceedings of the 1st ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems. PODS ’82. Association for Computing
Machinery, New York, NY, USA, 117–123.

[47] deMoura, L. and Bjørner, N. 2008. Z3: An e�icient smt solver. In Tools and Algorithms
for the Construction and Analysis of Systems, C. R. Ramakrishnan and J. Rehof, Eds.
Springer Berlin Heidelberg, Berlin, Heidelberg, 337–340.

[48] De Moura, L. and Bjørner, N. 2011. Satisfiability modulo theories: Introduction and
applications. Commun. ACM 54, 9 (sep), 69–77.

[49] de Moura, P. J. L. 2003. Logtalk design of an object-oriented logic programming
language. Ph.D. thesis.

[50] Denecker, M. and De Cat, B. 2010. Dpll(agg): An e�icient smt module for aggregates.
https://lirias.kuleuven.be/retrieve/112271.

296

https://lirias.kuleuven.be/retrieve/112271

[51] Dershowitz, N. 1987. Termination of rewriting. Journal of Symbolic Computation 3.

[52] Diaz, D., Abreu, S., and Codognet, P. 2010. On the implementation of GNU prolog.
CoRR abs/1012.2496.

[53] Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271.

[54] Dreyer, M. and Eisner, J. 2006. Be�er informed training of latent syntactic features.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP). Sydney, 317–326.

[55] Dreyer, M., Smith, D. A., and Smith, N. A. 2006. Vine parsing and minimum risk
reranking for speed and precision. In Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning (CoNLL-X). Association for Computational Linguistics,
New York City, 201–205.

[56] Duboscq, G., Stadler, L.,Würthinger, T., Simon, D.,Wimmer, C., and Mössenböck,
H. Graal ir: An extensible declarative intermediate representation.

[57] Duboscq, G.,Würthinger, T., Stadler, L.,Wimmer, C., Simon, D., and Mössenböck,
H. 2013. An intermediate representation for speculative optimizations in a dynamic
compiler. In Proceedings of the 7th ACM Workshop on Virtual Machines and Intermediate
Languages. VMIL ’13. ACM, New York, NY, USA.

[58] Eisner, J. and Blatz, J. 2007. Program transformations for optimization of parsing
algorithms and other weighted logic programs. In Proceedings of FG 2006: The 11th
Conference on Formal Grammar, S. Wintner, Ed. CSLI Publications.

[59] Eisner, J. and Filardo, N. W. 2011. Dyna: Extending Datalog for modern AI. In
Datalog Reloaded, O. de Moor, G. Go�lob, T. Furche, and A. Sellers, Eds. Lecture Notes
in Computer Science, vol. 6702. Springer.

[60] Eisner, J., Goldlust, E., and Smith, N. A. 2004. Dyna (1): A declarative language
for implementing dynamic programs. In Proceedings of Association for Computational
Linguistics (ACL), Companion Volume. Barcelona.

[61] Eisner, J., Goldlust, E., and Smith, N. A. 2005. Compiling comp ling: Weighted
dynamic programming and the Dyna language. In Proceedings of Human Language Tech-
nology Conference and Conference on Empirical Methods in Natural Language Processing
(HLT-EMNLP). Vancouver, 281–290.

[62] Eisner, J., Kornbluh, M.,Woodhull, G., Buse, R., Huang, S.,Michael, C., and Shafer,
G. 2006. Visual navigation through large directed graphs and hypergraphs. In Proceedings

297

of the IEEE Symposium on Information Visualization (InfoVis’06), Poster/Demo Session.
Baltimore, 116–117.

[63] Eisner, J. and Smith, N. A. 2005. Parsing with so� and hard constraints on dependency
length. In Proceedings of the International Workshop on Parsing Technologies (IWPT).
Vancouver, 30–41.

[64] FANDINNO, J. and SCHULZ, C. 2019. Answering the “why” in answer set programming
– a survey of explanation approaches. Theory and Practice of Logic Programming 19, 2,
114–203.

[65] Fierens, D., Van Den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon, I.,
Janssens, G., and De Raedt, L. 2015. Inference and learning in probabilistic logic pro-
grams using weighted boolean formulas. Theory and Practice of Logic Programming 15, 3.

[66] Filardo, N. W. 2017. Dyna 2: Towards a general weighted logic language. Ph.D. thesis.

[67] Filardo, N. W. and Eisner, J. 2012. A flexible solver for finite arithmetic circuits.
In Technical Communications of the International Conference on Logic Programming,
A. Dovier and V. S. Costa, Eds. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 17. Budapest.

[68] Filardo, N. W. and Eisner, J. 2016. Rigid tree automata with isolation. In Proceedings
of the Fourth International Workshop on Trends in Tree Automata and Tree Transducers
(TTATT). Seoul.

[69] Ford, L. 1956. Network flow theory.

[70] Francis-Landau, M., Vieira, T., and Eisner, J. 2020. Evaluation of logic programs with
built-ins and aggregation: A calculus for bag relations. In 13th International Workshop
on Rewriting Logic and Its Applications. 49–63.

[71] Friedman, D. P., Byrd, W. E., and Kiselyov, O. 2005. The Reasoned Schemer. The MIT
Press.

[72] Frühwirth, T. 1998. Theory and practice of constraint handling rules. The Journal of
Logic Programming 37, 1, 95 – 138.

[73] Futamura, Y. 1983. Partial computation of programs. In RIMS Symposia on So�ware
Science and Engineering. Springer.

[74] Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D., Haghighat, M. R., Kaplan,
B., Hoare, G., Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E. W., Reitmaier, R.,
Bebenita, M., Chang, M., and Franz, M. 2009. Trace-based just-in-time type special-
ization for dynamic languages. In Proceedings of the 30th ACM SIGPLAN Conference on

298

Programming Language Design and Implementation. PLDI ’09. ACM, New York, NY, USA,
465–478.

[75] Gal, A., Probst, C. W., and Franz, M. 2006. Hotpathvm: An e�ective jit compiler
for resource-constrained devices. In Proceedings of the 2nd International Conference on
Virtual Execution Environments. VEE ’06. Association for Computing Machinery, New
York, NY, USA, 144–153.

[76] Gallaire, H.,Minker, J., and Nicolas, J.-M. 1984. Logic and databases: A deductive
approach. ACM Comput. Surv. 16, 2 (June), 153–185.

[77] Gallego Arias, E. J., Lipton, J., and Mariño, J. 2017a. Constraint logic programming
with a relational machine. Formal Aspects of Computing 29, 1 (Jan), 97–124.

[78] Gallego Arias, E. J., Lipton, J., and Mariño, J. 2017b. Constraint logic programming
with a relational machine. Formal Aspects of Computing 29, 1 (Jan), 97–124.

[79] Gebser, M., Kaufmann, B., and Schaub, T. 2012. Conflict-driven answer set solving:
From theory to practice. Artif. Intell. 187–188, 52–89.

[80] Gergatsoulis, M. and Katzouraki, M. 1994. Unfold/fold transformations for definite
clause programs. In Programming Language Implementation and Logic Programming,
M. Hermenegildo and J. Penjam, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg,
340–354.

[81] Goodman, N. D., Mansinghka, V. K., Roy, D., Bonawitz, K., and Tenenbaum, J. B.
2008. Church: A language for generative models. In Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence. UAI’08. AUAI Press, Arlington, Virginia,
USA, 220–229.

[82] Greco, S. 1999. Dynamic programming in datalog with aggregates. IEEE Trans. on
Knowl. and Data Eng. 11, 2 (Mar.).

[83] Green, T. J. 2009. Bag semantics. In Encyclopedia of Database Systems, L. LIU and
M. T. ÖZSU, Eds. Springer, Boston, MA, 201–206.

[84] Hanus, M. 1997. A unified computationmodel for functional and logic programming. In
Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’97. ACM, New York, NY, USA.

[85] Hanus, M. 2007. Multi-paradigm declarative languages. In Proceedings of the Interna-
tional Conference on Logic Programming (ICLP 2007). Springer LNCS 4670, 45–75.

[86] Hanus, M., Antoy, S., Brassel, B., Kuchen, H., López-Fraguas, F. J., Lux, W.,Navarro, J.
J. M., Peemöller, B., and Steiner, F. 2016. Curry an integrated functional logic language.

299

[87] Hanus, M., Kuchen, H., and Moreno-Navarro, J. J. 1995. Curry: A truly functional
logic language.

[88] Hanus, M. and Prehofer, C. 1996. Higher-order narrowing with definitional trees.
In Rewriting Techniques and Applications, H. Ganzinger, Ed. Springer Berlin Heidelberg,
Berlin, Heidelberg, 138–152.

[89] Hanus, M. and Sadre, R. 1999. An abstract machine for curry and its concurrent
implementation in java. J. Funct. Log. Program. 1999.

[90] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cour-
napeau, D.,Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S.,
van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P.,
Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.,
and Oliphant, T. E. 2020. Array programming with NumPy. Nature 585, 7825 (Sept.),
357–362.

[91] Hemann, J., Friedman, D. P., Byrd, W. E., and Might, M. 2018. A Simple Complete
Search for Logic Programming. In Technical Communications of the 33rd International
Conference on Logic Programming (ICLP 2017), R. Rocha, T. C. Son, C.Mears, and N. Saeed-
loei, Eds. OpenAccess Series in Informatics (OASIcs), vol. 58. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany.

[92] Hickey, R. 2008. The clojure programming language. In Proceedings of the 2008
Symposium on Dynamic Languages. DLS ’08. Association for Computing Machinery, New
York, NY, USA.

[93] Hoffmann, B. 1992. Term rewriting with sharing and memoïzation. In Algebraic and
Logic Programming: Proc. of the Third International Conference. Springer, 128–142.

[94] Kamperman, J. 1996. Compilation of term rewriting systems. Ph.D. thesis, University
of Amsterdam.

[95] Karakos, D., Eisner, J., Khudanpur, S., and Dreyer, M. 2008. Machine translation
system combination using ITG-based alignments. In Proceedings of ACL-08: HLT, Short
Papers. Columbus, Ohio, 81–84.

[96] Karp, R. M. 1972. Reducibility among Combinatorial Problems. Springer US, Boston,
MA, 85–103.

[97] Kawamura, T. and Kanamori, T. 1990. Preservation of stronger equivalence in unfold/-
fold logic program transformation. Theoretical Computer Science 75, 1, 139–156.

[98] Klug, A. 1982. Equivalence of relational algebra and relational calculus query languages
having aggregate functions. J. ACM 29, 3 (jul), 699–717.

300

[99] Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J.,
Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., and
Willing, C. 2016. Jupyter notebooks – a publishing format for reproducible computa-
tional workflows. In Positioning and Power in Academic Publishing: Players, Agents and
Agendas, F. Loizides and B. Schmidt, Eds. IOS Press, 87 – 90.

[100] Kowalski, R. 1979. Algorithm = logic + control. Commun. ACM 22, 7 (jul), 424–436.

[101] Lloyd, J. W. J. W. 1987. Foundations of logic programming / J.W. Lloyd., 2nd, extended
ed. ed. Symbolic computation. Artificial intelligence. Springer-Verlag, Berlin ;.

[102] Martelli, A. and Montanari, U. 1982. An e�icient unification algorithm. ACM
Transactions on Programming Languages and Systems (TOPLAS) 4, 2, 258–282.

[103] Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M.,
Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E.,
Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J.,
Terrel, A. R., Roučka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and Scopatz,
A. 2017. Sympy: symbolic computing in python. PeerJ Computer Science 3, e103.

[104] Michie, D. 1968. “memo” functions and machine learning. Nature 218, 5136 (Apr),
19–22.

[105] Miller, D. and Nadathur, G. 2012. Programming with Higher-Order Logic. Cambridge
University Press.

[106] Mishra, P. and Eich, M. H. 1992. Join processing in relational databases. ACM
Comput. Surv. 24, 1 (mar), 63–113.

[107] Monniaux, D. 2016. A Survey of Satisfiability Modulo Theory. In Computer Algebra
in Scientific Computing. Bucharest, Romania.

[108] Overton, D. 2003. Precise and expressive mode systems for typed logic programming
languages. Ph.D. thesis, University of Melbourne.

[109] Pall, M. The LuaJIT Project.

[110] Parr, T. 2013. The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic Bookshelf.

[111] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmai-
son, A., Antiga, L., and Lerer, A. 2017. Automatic di�erentiation in pytorch. In NIPS
2017 Workshop on Autodi�.

[112] Pfeffer, A. 2016. Practical probabilistic programming / Avi Pfe�er., 1st edition ed.
Manning Publications, Shelter Island, New York.

301

[113] Rossi, F., van Beek, P., andWalsh, T., Eds. 2006. Handbook of Constraint Programming.
Foundations of Artificial Intelligence, vol. 2. Elsevier.

[114] Ros,u, G. and S, erbănută, T. F. 2010. An overview of the k semantic framework. The
Journal of Logic and Algebraic Programming 79, 6, 397–434. Membrane computing and
programming.

[115] Rucker, R. 1982. Infinity and the mind: the science and philosophy of the infinite.
Birkhäuser, Boston.

[116] Ruf, E. 1993. Topics in online partial evaluation. Ph.D. thesis, Stanford University.
Published as Technical Report CSL-TR-93-563.

[117] Schafer, C. 2006. Novel probabilistic finite-state transducers for cognate and translit-
eration modeling. In Proceedings of the 7th Conference of the Association for Machine
Translation in the Americas: Technical Papers. Association for Machine Translation in the
Americas, Cambridge, Massachuse�s, USA, 203–212.

[118] SCHIMPF, J. and SHEN, K. 2012. ECLiPSe – From LP to CLP. Theory and Practice of
Logic Programming 12, 1-2, 127–156.

[119] Scholz, B., Jordan, H., Subotić, P., and Westmann, T. 2016. On fast large-scale
program analysis in datalog. In Proceedings of the 25th International Conference on
Compiler Construction. CC 2016. ACM, New York, NY, USA.

[120] Sekar, R., Ramakrishnan, I. V., and Voronkov, A. 2001. Term Indexing. Elsevier
Science Publishers B. V., NLD, 1853–1964.

[121] Smith, D. A. and Eisner, J. 2006a. Minimum-risk annealing for training log-linear
models. In Proceedings of the International Conference on Computational Linguistics and
the Association for Computational Linguistics (COLING-ACL), Companion Volume. Sydney,
787–794.

[122] Smith, D. A. and Eisner, J. 2006b. �asi-synchronous grammars: Alignment by so�
projection of syntactic dependencies. In Proceedings of the HLT-NAACL Workshop on
Statistical Machine Translation. New York, 23–30.

[123] Smith, D. A. and Eisner, J. 2008. Dependency parsing by belief propagation. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP). Honolulu, 145–156.

[124] Smith, D. A. and Smith, N. A. 2004. Bilingual parsing with factored estimation: Using
English to parse Korean. In Proceedings of the 2004 Conference on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics, Barcelona,
Spain, 49–56.

302

[125] Smith, N. A. and Eisner, J. 2004. Annealing techniques for unsupervised statisti-
cal language learning. In Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics. ACL ’04. Association for Computational Linguistics, USA,
486–es.

[126] Smith, N. A. and Eisner, J. 2005a. Contrastive estimation: Training log-linear models
on unlabeled data. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05). Association for Computational Linguistics, Ann
Arbor, Michigan, 354–362.

[127] Smith, N. A. and Eisner, J. 2005b. Guiding unsupervised grammar induction using
contrastive estimation. In International Joint Conference on Artificial Intelligence (IJCAI)
Workshop on Grammatical Inference Applications. Edinburgh, 73–82.

[128] Smith, N. A. and Eisner, J. 2006c. Annealing structural bias in multilingual weighted
grammar induction. In Proceedings of the International Conference on Computational
Linguistics and the Association for Computational Linguistics (COLING-ACL). Sydney,
569–576.

[129] Smith, N. A., Smith, D. A., and Tromble, R. W. 2005. Context-based morphological
disambiguation with random fields. In Proceedings of Human Language Technology Con-
ference and Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, Vancouver, British Columbia, Canada, 475–482.

[130] Smith, N. A., Vail, D. L., and Lafferty, J. D. 2007. Computationally e�icient M-
estimation of log-linear structure models. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics. Association for Computational Linguistics,
Prague, Czech Republic, 752–759.

[131] Socher-Ambrosius, R. and Johann, P. 1997. Deduction systems. Graduate texts in
computer science. Springer, New York.

[132] Somogyi, Z., Henderson, F. J., and Conway, T. C. 1995. The implementation of
mercury, an e�icient purely declarative logic programming language. In Proceedings of
the Australian Computer Science Conference.

[133] Stein, L. A., Lieberman, H., and Ungar, D. 1989. A Shared View of Sharing: The Treaty
of Orlando. Association for Computing Machinery, New York, NY, USA, 31–48.

[134] Suzuki, H. 2012. The internals of postgreSQL. https://www.interdb.jp/pg/.

[135] Swift, T. and Warren, D. S. 2010. XSB: Extending Prolog with tabled logic program-
ming. CoRR abs/1012.5123. Under consideration for publication in Theory and Practice
of Logic Programming.

303

https://www.interdb.jp/pg/

[136] Taivalsaari, A. 1996. On the notion of inheritance. ACM Comput. Surv. 28, 3 (sep),
438–479.

[137] Thompson, J. 2006. Yield prolog - embed prolog in your code code. https:

//yieldprolog.sourceforge.net/.

[138] Tolpin, D., van de Meent, J.-W., and Wood, F. 2015. Probabilistic programming in
anglican. In Proceedings of the 2015th European Conference on Machine Learning and
Knowledge Discovery in Databases - Volume Part III. ECMLPKDD’15. Springer, Gewerbe-
strasse 11 CH-6330, Cham (ZG), CHE, 308–311.

[139] Tran, D., Kucukelbir, A., Dieng, A. B., Rudolph, M., Liang, D., and Blei, D. M. 2016.
Edward: A library for probabilistic modeling, inference, and criticism. arXiv preprint
arXiv:1610.09787 .

[140] Ullman, J. D. 1988. Principles of Database and Knowledge-Base Systems. Vol. 1. Com-
puter Science Press.

[141] Vieira, T. 2023. Automating the analysis and improvement of dynamic programming
algorithms with applications to natural language processing. Ph.D. thesis.

[142] Vieira, T., Francis-Landau, M., Filardo, N. W., Khorasani, F., and Eisner, J. 2017.
Dyna: Toward a self-optimizing declarative language for machine learning applications.
In Proc. of the ACM SIGPLANWorkshop on Machine Learning and Programming Languages.
ACM, Barcelona, 8–17.

[143] Vittek, M. 1996. A compiler for nondeterministic term rewriting systems. In Interna-
tional Conference on Rewriting Techniques and Applications (RTA).

[144] Warren, D. H. D. 1983. An abstract prolog instruction set. Tech. rep., SRI International
Artificial Intelligence Center. 10.

[145] Warren, D. S. 1992. Memoing for logic programs. Commun. ACM 35, 3 (mar), 93–111.

[146] Wielemaker, J. and Anjewierden, A. 2002. An architecture for making object-oriented
systems available from Prolog. InWLPE.

[147] Wielemaker, J., Schrijvers, T., Triska, M., and Lager, T. 2012. SWI-Prolog. Theory
and Practice of Logic Programming 12, 1-2, 67–96.

[148] Wiles, A. 1995. Modular elliptic curves and Fermat’s last theorem. Annals of Mathe-
matics 141, 3, 443–551.

[149] Wimmer, C. and Würthinger, T. 2012. Tru�le: A self-optimizing runtime system.
In Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications:
So�ware for Humanity. SPLASH ’12. ACM, New York, NY, USA.

304

https://yieldprolog.sourceforge.net/
https://yieldprolog.sourceforge.net/

[150] Wolfram, S. 2003. The Mathematica Book, 5th Edition ed. Wolfram-Media.

[151] XSB 2010. XSB. http://xsb.sourceforge.net/.

[152] Zhou, N.-F. and Sato, T. 2003. Toward a high-performance system for symbolic and
statistical modeling. In Proc. of the IJCAI Workshop on Learning Statistical Models from
Relational Data.

305

http://xsb.sourceforge.net/

	Abstract
	Dedication
	Acknowledgements
	Contents
	List of Figures
	List of Algorithms
	Introduction
	Dissertation Outline
	Brief History of the Dyna Project

	The Dyna Programming Language
	Dyna's Roots in Logic Programming
	Structured Terms
	Builtin Structured Terms

	Weighted Rules
	Evaluation by Default

	A User's Interaction With Dyna
	Python API
	Multi-file Programs

	Invariance to Expression Order
	Fixed-Point Computations
	Non-ground Reasoning
	Memoization, Dynamic Programming, and Reactive Programming
	Prioritization of Updates
	Memoization with non-ground variables

	Modern PL Constructions
	Higher-Order Functions
	Lambda functions
	Type Declarations
	Type Checking and Type Errors

	Object-Oriented Programming (OOP) via Dynabases
	Dynabases vs Procedural Programming OOP

	Embedded Domain Specific Languages
	String DSLs
	Macros

	Related Work
	Logic Programming Languages
	Prolog Language
	Infinite Relations in Prolog

	Datalog Language
	Datalog is Breath First, Prolog is Depth First
	Aggregation in Logic Programming
	Constraint Logic Programming
	MiniKanren

	Constraint Satisfaction Programming

	Probabilistic Programming
	Relational Algebra
	Term rewriting
	Implementation of Term Rewriting
	Term Rewriting a Relational Algebra for Logic Programming
	Functional Logic Programming

	Memoization & Reactive
	Compilation

	Challenges in Dyna
	Features in Dyna
	Examples of Difficult Programs
	All Pairs Shortest Path
	``Infinite'' Neural Network
	``Infinitely'' Many Dynabases
	``Infinite'' Identity Matrix

	A Common Theme

	Relational Expressions for Logic programming
	Representing Programs Using Bags
	Bags of Named Tuples
	Representations of Constraints in Bags
	A First Step Towards Computation with Bags
	A More Convenient Notation

	Semantics of R-exprs
	Ground Values
	Inductive Definition of R-exprs Semantics
	Equality Constraints
	Structured Term Equality Constraints
	Builtin R-exprs Constraints
	Constraints
	Disjunctions
	Conjunctions
	Multiplicities
	Conditionals
	Projection
	Aggregation
	User-defined R-exprs

	Example R-exprs
	Finite Materialized Relation
	Bag with Constraints
	Simple Dyna Rule

	Conclusion of R-expr Semantics

	Rewrites Rules for R-exprs
	Equality Constraints and Multiplicity
	Structured Term Equality Rewrites
	Multiplicity Rewrites

	Joining Relations
	Simple Example
	Structuring Disjuncts and Conjuncts as Tries

	Built-in R-expr Rewrites
	Projection
	Example Projection

	Aggregation
	Rewrite Rule 50 for Handling Disjunctions
	Other Aggregation Rewrites
	Rewriting Aggregation With Partial Information

	Conditional if-Expression Rewrites
	User-Defined R-exprs Rewrites
	Incompleteness of Included Rewrites

	Conversion of Logic Programs to Relational Expressions
	Dyna Programs Represent a Key-Value Map
	Grouping User-Defined Rules by Name
	Different Aggregators
	Additional Metadata for Aggregators
	Built-ins
	Dynabases

	A Basic Implementation of R-expr Rewriting
	R-exprs, The Data Structure
	Evaluation by Simplifying an R-expr
	Properties of methodcolorSimplify
	Finding Applicable Rewrites
	The Context

	Canonical Ordering of an R-expr
	Why factored R-exprs are Preferable

	Appendix: Basic methodcolorSimplify Pseudocode

	Rearranging R-exprs to Enable Further Rewriting
	The Problem with methodcolorSimplify from chap:minimalimpl
	Using Nested Constraints
	Example Using Optional Constraints
	Can Optional Constraints Solve all Disjunctive R-exprs?

	Memoization, Reactivity, Cycles, and Updates
	What is Memoization?
	Example of Memoization in a Procedural Programming Language
	The Facets of Memoization

	First Steps Towards R-expr Memoization
	Advantages of Homogeneity
	Persisting Memos to Make them Globally Usable
	Things to Consider When Choosing a Signature for Memoization

	Example: Memoization of an R-expr
	Conclusion of Basic Memos

	Handling Change
	Assuming Reads Never Change
	Updating Memoized R-exprs

	Example: Updating a Dyna Program

	Handling Cyclic Programs
	Making Guesses
	Example: Using Guessing with a Cyclic Program

	Choice of default Guesses
	User Override for Initial Guesses

	Guesses are Un-bypass-able
	Why Guessing Requires if-expressions

	Memoization Container
	Memoization Container
	Handling Memos we ``Want'' but do not ``Have''

	Update Loop
	Controlling Memoization
	$memo Controller
	$ground and $free Annotation
	"unk" Memos
	Implementation of $memo
	Ordering Updates with $priority

	A Realistic Implementation of R-exprs
	Design Goals for our Implementation
	What does ``Efficient Implementation'' Mean?

	Implementation Overview
	Dyna's Front-end
	Realistic Rewriting, Part 1
	Declaration of R-exprs and Rewrites
	Declaration of R-expr Kinds
	Declaration of Built-Ins
	Declaration of Rewrite Rules
	First Declaration of a Rewrite Rule
	Assignment Rewrites
	Handling Invalid Inputs
	Modifying the Context
	Rewrite Priorities
	Inference Rewrites
	Combining R-exprs for Inference Rewrites
	Recursive Rewrites

	Conclusion of R-exprs and Rewrites Declarations

	Efficient R-exprs Kinds
	Efficient Disjunctions
	Requirements on the Efficient Disjunction Data Structure
	Efficient Disjunction using a Trie

	Efficient Memoization uses Tries
	Efficient Aggregation & Projection

	Iterators
	Iterator Interface
	Different Kinds of Iterators
	Iterators Attempt to Stream Values
	Using Iterators
	Efficient Aggregation uses Iterators

	Compilation of R-expr Rewrite Strategies
	What is Overhead?
	Overhead with R-exprs Rewriting

	Compilation Overview
	Generating New JITted R-expr Kinds
	Generating New Rewrites
	Combing Multiple Rewrites Into One
	What Happens If Only Some Rewrites Match?

	How to Reenter JITted R-exprs
	Abstract Evaluation of Primitive Rewrites
	Structure of Generated Rewrites
	Generating Aggregators in the JIT-Generated Rewrites

	What is JITable?
	Starting the JIT Compiler
	Experiments: Benchmarks

	Object Oriented Programming in a Pure Declarative Language
	Dynabases
	Dynabase Object Representation
	Why Capture All Variables?

	Desugared Dynabases
	Dynabase Rewrite Rules
	Self-Inheritance
	Comparison with eisner-filardo-2011 Proposal for Dynabases

	Folding and Speculative Rewrites for Recursive Programs
	Why Fold a Program
	How to Fold
	Example Using Folding to Solve a Recursive Program
	Folding Updatable User-Defined R-exprs

	Properties of methodcolorSimplify
	Is methodcolorSimplify Sound and Complete?
	Soundness of methodcolorSimplify
	R-exprs Rewrites are Incomplete
	Completeness on Datalog Subset
	Emulating SLD Resolution

	Dyna is Turing Complete
	Termination of methodcolorSimplifyNormalize on a Bounded Size R-expr
	Making an R-expr Bounded in Size
	Outline: How to Prove Termination
	Construction of ``Core'' Energy
	Energy for Built-in R-exprs
	Energy for all R-exprs
	Checking Energy of Rewrites

	Future work
	Additional Disjunctive R-exprs
	Improvements to the Trie
	Dense Numerical Types
	Backed by Something other than Memory

	User Studies
	Libraries Written in Dyna
	User-Friendliness

	More Rewrite Rules
	Automatic Configuration
	Automatic Guessing on Cycles
	Automatic Prioritization of Updates
	Automatic Variable Ordering

	Concurrency
	The Memoization Update Queue
	GPU Coprocessor
	External Solvers
	Advanced Update Propagation
	Automatic Runtime Analysis and Folding of Programs
	Improved Context C

	Conclusion
	Bibliography

