
1

Tim Vieira, Matthew Francis-Landau,
Nathaniel Wesley Filardo, Farzad Khorasani,

and Jason Eisner

2

Dyna:
Toward a Self-Optimizing Declarative Language
for Machine Learning Applications

2

Dyna:
Toward a Self-Optimizing Declarative Language
for Machine Learning Applications

ML PL

2

Dyna:
Toward a Self-Optimizing Declarative Language
for Machine Learning Applications

ML PL

2

Dyna:
Toward a Self-Optimizing Declarative Language
for Machine Learning Applications

ML PL

Faster to implement

2

Dyna:
Toward a Self-Optimizing Declarative Language
for Machine Learning Applications

ML PL

Faster to implement

Faster execution

2

Dyna:
Toward a Self-Optimizing Declarative Language
for Machine Learning Applications

ML PL

Faster to implement

Faster execution

Outline

3

Outline

• Why Declarative Programming?

3

Outline

• Why Declarative Programming?

• Quick introduction to the Dyna language

3

ML PL

Outline

• Why Declarative Programming?

• Quick introduction to the Dyna language

• Automatic optimization of Dyna programs

3

ML PL

ML PL

4

Declarative Programming

4

Declarative Programming

A programming paradigm where the
programmer specifies what to compute

and leaves how to compute it to a solver.

4

Declarative Programming

➢ Examples: SQL, Prolog/Datalog, Mathematica, Regex, TensorFlow/Theano

A programming paradigm where the
programmer specifies what to compute

and leaves how to compute it to a solver.

4

Declarative Programming

➢ Examples: SQL, Prolog/Datalog, Mathematica, Regex, TensorFlow/Theano
➢ Solver seeks an efficient strategy (e.g., SQL query planning)

A programming paradigm where the
programmer specifies what to compute

and leaves how to compute it to a solver.

Why declarative programming?

5

Why declarative programming?

• Many ML algorithms have a concise declarative program

5

Why declarative programming?

• Many ML algorithms have a concise declarative program

• There are many choices to make when writing a fast program

5

Why declarative programming?

• Many ML algorithms have a concise declarative program

• There are many choices to make when writing a fast program
• Loop orders

5

Why declarative programming?

• Many ML algorithms have a concise declarative program

• There are many choices to make when writing a fast program
• Loop orders
• Data structures (e.g., hash map, dense array, linked list)

5

Why declarative programming?

• Many ML algorithms have a concise declarative program

• There are many choices to make when writing a fast program
• Loop orders
• Data structures (e.g., hash map, dense array, linked list)
• Global execution strategy (e.g., depth vs. breadth-first search)

5

Why declarative programming?

• Many ML algorithms have a concise declarative program

• There are many choices to make when writing a fast program
• Loop orders
• Data structures (e.g., hash map, dense array, linked list)
• Global execution strategy (e.g., depth vs. breadth-first search)
• Parallelization opportunities

5

Why declarative programming?

• Many ML algorithms have a concise declarative program

• There are many choices to make when writing a fast program
• Loop orders
• Data structures (e.g., hash map, dense array, linked list)
• Global execution strategy (e.g., depth vs. breadth-first search)
• Parallelization opportunities

• Manually experimenting with all possibilities is time consuming

5

Why declarative programming?

• Many ML algorithms have a concise declarative program

• There are many choices to make when writing a fast program
• Loop orders
• Data structures (e.g., hash map, dense array, linked list)
• Global execution strategy (e.g., depth vs. breadth-first search)
• Parallelization opportunities

• Manually experimenting with all possibilities is time consuming
• Programmers usually only implement one

5

Why declarative programming?

• Many ML algorithms have a concise declarative program

• There are many choices to make when writing a fast program
• Loop orders
• Data structures (e.g., hash map, dense array, linked list)
• Global execution strategy (e.g., depth vs. breadth-first search)
• Parallelization opportunities

• Manually experimenting with all possibilities is time consuming
• Programmers usually only implement one

• Researchers don’t have time to optimize the efficiency of their code
• We can do better with automatic optimization

5

Why not optimize Python/Java/C++ etc.?

6

Why not optimize Python/Java/C++ etc.?

• Less flexibility
• Choices of loop orders / data structures already decided by the human

programmer

6

Why not optimize Python/Java/C++ etc.?

• Less flexibility
• Choices of loop orders / data structures already decided by the human

programmer

• Semantics of the program are not invariant to
• Changing execution and loop order

• Eager vs. lazy evaluation, top-down vs bottom-up evaluation.

6

Why not optimize Python/Java/C++ etc.?

• Less flexibility
• Choices of loop orders / data structures already decided by the human

programmer

• Semantics of the program are not invariant to
• Changing execution and loop order

• Eager vs. lazy evaluation, top-down vs bottom-up evaluation.

• Data structures

6

Why not optimize Python/Java/C++ etc.?

• Less flexibility
• Choices of loop orders / data structures already decided by the human

programmer

• Semantics of the program are not invariant to
• Changing execution and loop order

• Eager vs. lazy evaluation, top-down vs bottom-up evaluation.

• Data structures

• Concurrency

6

Why not optimize Python/Java/C++ etc.?

• Less flexibility
• Choices of loop orders / data structures already decided by the human

programmer

• Semantics of the program are not invariant to
• Changing execution and loop order

• Eager vs. lazy evaluation, top-down vs bottom-up evaluation.

• Data structures

• Concurrency

• Difficult to reliably discover long range interactions in a program

6

What is Dyna?

7

What is Dyna?

• Declarative language

7

What is Dyna?

• Declarative language

• Based on weighted logic programming

7

What is Dyna?

• Declarative language

• Based on weighted logic programming

• Prolog / Datalog like syntax
• Uses pattern matching to define computation graphs

7

What is Dyna?

• Declarative language

• Based on weighted logic programming

• Prolog / Datalog like syntax
• Uses pattern matching to define computation graphs

• Reactive

7

What is Dyna?

• Declarative language

• Based on weighted logic programming

• Prolog / Datalog like syntax
• Uses pattern matching to define computation graphs

• Reactive

• Dyna programs are close to their mathematical description
• Similar to functional programs

7

8

Dyna Day 1

8

Dyna Day 1
a = b * c.

a will be kept up to date if b or c changes. (Reactive)

8

Dyna Day 1
a = b * c.

a will be kept up to date if b or c changes. (Reactive)

b += x.

b += y. equivalent to b = x+y. (almost)

b is a sum of two variables. Also kept up to date.

8

Dyna Day 1
a = b * c.

a will be kept up to date if b or c changes. (Reactive)

b += x.

b += y. equivalent to b = x+y. (almost)

b is a sum of two variables. Also kept up to date.

c += z(1).

c += z(2).

c += z(3).

8

Dyna Day 1
a = b * c.

a will be kept up to date if b or c changes. (Reactive)

b += x.

b += y. equivalent to b = x+y. (almost)

b is a sum of two variables. Also kept up to date.

c += z(1).

c += z(2).

c += z(3).

c is a sum of all

defined z(…) values.

a “patterns”
the capitalized N
matches anything

c += z(N).

8

Dyna Day 1
a = b * c.

a will be kept up to date if b or c changes. (Reactive)

b += x.

b += y. equivalent to b = x+y. (almost)

b is a sum of two variables. Also kept up to date.

c += z(1).

c += z(2).

c += z(3).

c += z("four").

c += z(foo(bar,5)). c is a sum of all

defined z(…) values.

a “patterns”
the capitalized N
matches anything

c += z(N).

9

More interesting use of “patterns”

9

More interesting use of “patterns”
a(I) = b(I) * c(I).

• pointwise multiplication

9

More interesting use of “patterns”
a(I) = b(I) * c(I).

• pointwise multiplication

a += b(I) * c(I).

• dot product; could be sparse

9

More interesting use of “patterns”
a(I) = b(I) * c(I).

• pointwise multiplication

a += b(I) * c(I).

• dot product; could be sparse

9

More interesting use of “patterns”
a(I) = b(I) * c(I).

• pointwise multiplication

a += b(I) * c(I).

• dot product; could be sparse

a(I,K) += b(I,J) * c(J,K).

• matrix multiplication; could be sparse

• J is free on the right-hand side, so we sum over it

9

More interesting use of “patterns”
a(I) = b(I) * c(I).

• pointwise multiplication

a += b(I) * c(I).

• dot product; could be sparse

a(I,K) += b(I,J) * c(J,K).

• matrix multiplication; could be sparse

• J is free on the right-hand side, so we sum over it

9

More interesting use of “patterns”
a(I) = b(I) * c(I).

• pointwise multiplication

a += b(I) * c(I).

• dot product; could be sparse

a(I,K) += b(I,J) * c(J,K).

• matrix multiplication; could be sparse

• J is free on the right-hand side, so we sum over it

10

Dyna vs. Prolog

10

Prolog has Horn clauses:

a(I,K) :- b(I,J) , c(J,K).

Dyna vs. Prolog

10

Prolog has Horn clauses:

a(I,K) :- b(I,J) , c(J,K).

Dyna has “Horn equations”:

a(I,K) += b(I,J) * c(J,K).

Dyna vs. Prolog

10

Prolog has Horn clauses:

a(I,K) :- b(I,J) , c(J,K).

Dyna has “Horn equations”:

a(I,K) += b(I,J) * c(J,K).

Dyna vs. Prolog

10

Prolog has Horn clauses:

a(I,K) :- b(I,J) , c(J,K).

Dyna has “Horn equations”:

a(I,K) += b(I,J) * c(J,K).

Dyna vs. Prolog

prove a value for it
e.g., a real number,
but could be any term

10

Prolog has Horn clauses:

a(I,K) :- b(I,J) , c(J,K).

Dyna has “Horn equations”:

a(I,K) += b(I,J) * c(J,K).

Dyna vs. Prolog

prove a value for it
e.g., a real number,
but could be any term

definition from other values
b*c only has value when b and c do
if no values enter into +=, then a gets no value

10

Prolog has Horn clauses:

a(I,K) :- b(I,J) , c(J,K).

Dyna has “Horn equations”:

a(I,K) += b(I,J) * c(J,K).

Dyna vs. Prolog

prove a value for it
e.g., a real number,
but could be any term

definition from other values
b*c only has value when b and c do
if no values enter into +=, then a gets no value

Like Prolog:
Allow nested terms
Syntactic sugar for lists, etc.
Turing-complete

10

Prolog has Horn clauses:

a(I,K) :- b(I,J) , c(J,K).

Dyna has “Horn equations”:

a(I,K) += b(I,J) * c(J,K).

Dyna vs. Prolog

prove a value for it
e.g., a real number,
but could be any term

definition from other values
b*c only has value when b and c do
if no values enter into +=, then a gets no value

Like Prolog:
Allow nested terms
Syntactic sugar for lists, etc.
Turing-complete

Unlike Prolog:
Terms can have values
Terms are evaluated in place
Not just backtracking!

Shortest path

11

Shortest path

distance(X) min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

11

Shortest path

distance(X) min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

edge("a", "b") = 10.
edge("b", "c") = 2.
edge("c", "d") = 7.
edge("d", "b") = 1.
start = "a".
end = "d".

11

Shortest path

distance(X) min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

11

Shortest path

distance(X) min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

11

Variables not
present in the head
of an expression are
aggregated over like

with the dot
product example.

Shortest path

distance(X) min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

Here the “min=“
aggregator only

keeps the
minimal value
that we have

computed

11

Shortest path

distance(X) min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

Note: Aggregation
was already present
in our mathematical

definition.

11

Shortest path

distance(X) min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

11

After this converges we can query the state of the Dyna program.

Shortest path

distance(X) min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

11

? path_length

After this converges we can query the state of the Dyna program.

Length at the end

Shortest path

distance(X) min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

11

? path_length
? distance("c")

After this converges we can query the state of the Dyna program.

The distance
of some

other vertex

Shortest path

distance(X) min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

11

? path_length
? distance("c")
? distance(X)

After this converges we can query the state of the Dyna program.

All of the
vertices

Shortest path

distance(X) min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

11

? path_length
? distance("c")
? distance(X)
? distance(X) > 7

After this converges we can query the state of the Dyna program.

All the vertices more
than 7 away

Shortest path

distance(X) min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

11

? path_length
? distance("c")
? distance(X)
? distance(X) > 7
? edge("a",X)

After this converges we can query the state of the Dyna program.

All of the edges
leaving "a"

12

Aggregators

12

Aggregators
• Associative/commutative:

• b += a(X). % number

• c max= a(X).

• q |= p(X). % boolean

• r &= p(X).

12

Aggregators
• Associative/commutative:

• b += a(X). % number

• c max= a(X).

• q |= p(X). % boolean

• r &= p(X).

• Require uniqueness:
• d = b+c.

12

Aggregators
• Associative/commutative:

• b += a(X). % number

• c max= a(X).

• q |= p(X). % boolean

• r &= p(X).

• Require uniqueness:
• d = b+c.

• Last one wins:
• fly(X) := true if bird(X).

• fly(X) := false if penguin(X).

• fly(bigbird) := false.

12

Aggregators
• Associative/commutative:

• b += a(X). % number

• c max= a(X).

• q |= p(X). % boolean

• r &= p(X).

• Require uniqueness:
• d = b+c.

• Last one wins:
• fly(X) := true if bird(X).

• fly(X) := false if penguin(X).

• fly(bigbird) := false.

• Choose any value:
• e ?= b.

• e ?= c.

12

Aggregators
• Associative/commutative:

• b += a(X). % number

• c max= a(X).

• q |= p(X). % boolean

• r &= p(X).

• Require uniqueness:
• d = b+c.

• Last one wins:
• fly(X) := true if bird(X).

• fly(X) := false if penguin(X).

• fly(bigbird) := false.

• Choose any value:
• e ?= b.

• e ?= c.

• User definable aggregators
• a(X) smiles= b(X, Z).

12

Aggregators
• Associative/commutative:

• b += a(X). % number

• c max= a(X).

• q |= p(X). % boolean

• r &= p(X).

• Require uniqueness:
• d = b+c.

• Last one wins:
• fly(X) := true if bird(X).

• fly(X) := false if penguin(X).

• fly(bigbird) := false.

• Choose any value:
• e ?= b.

• e ?= c.

• User definable aggregators
• a(X) smiles= b(X, Z).

• (Just define all of the operation of
an commutative semigroup)

Input image

Convolution output

Neural Convolutional Layer

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
13

Input image

Convolution output

Neural Convolutional Layer

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
13

Input image

Convolution output

Neural Convolutional Layer

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
13

Input image

Input image

Convolution output

Neural Convolutional Layer

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
13

Learned
feature
weights

Input image

Convolution output

Neural Convolutional Layer

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
13

Some
nonlinearity

Input image

Convolution output

Neural Convolutional Layer

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
13

Convolution
output

Neural Convolutional layer

(activation(I, J)).
(X) := 1 / (1 + exp(-X)).

14

Neural Convolutional layer

𝜎𝜎(X) := 1 / (1 + exp(-X)).
= σ(activation(I, J)).
activation(I, J) += input(I + M, J + N) * weight(M, N).

weight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

14

Neural Convolutional layer

𝜎𝜎(X) := 1 / (1 + exp(-X)).
= σ(activation(I, J)).
activation(I, J) += input(I + M, J + N) * weight(M, N).

weight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

14

Neural Convolutional layer

𝜎𝜎(X) := 1 / (1 + exp(-X)).
= σ(activation(I, J)).
activation(I, J) += input(I + M, J + N) * weight(M, N).

weight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

Summation became an
aggregator

14

Neural Convolutional layer

𝜎𝜎(X) := 1 / (1 + exp(-X)).
= σ(activation(I, J)).
activation(I, J) += input(I + M, J + N) * weight(M, N).

weight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

We can easily
define rules over

ℝ → ℝ

14

Neural Convolutional layer

𝜎𝜎(X) := 1 / (1 + exp(-X)).
= σ(activation(I, J)).
activation(I, J) += input(I + M, J + N) * weight(M, N).

weight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

14

Our ranges over 𝑚
and 𝑛 are reflected in
the shape of weight

Neural Convolutional layer

𝜎𝜎(X) := 1 / (1 + exp(-X)).
= σ(activation(I, J)).
activation(I, J) += input(I + M, J + N) * weight(M, N).

weight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

Here keys are integers but
we can also support more

complicated structures

14

More Neural
𝜎(X) = 1 / (1 + exp(-X)).
out(J) = σ(activation(J)).
activation(J) += out(I) * edge(I,J).

15

More Neural
𝜎(X) = 1 / (1 + exp(-X)).
out(J) = σ(activation(J)).
activation(J) += out(I) * edge(I,J).

All weights have been
rolled into the edges
connecting neurons

15

More Neural
𝜎(X) = 1 / (1 + exp(-X)).
out(J) = σ(activation(J)).
activation(J) += out(I) * edge(I,J).

The output of a neuron is
our nonlinearity applied
to the sum of its inputs

15

More Neural
𝜎(X) = 1 / (1 + exp(-X)).
out(J) = σ(activation(J)).
activation(J) += out(I) * edge(I,J).

Note: nowhere in
this program do we
specify the form of
our variables I, J

15

More Neural
𝜎(X) = 1 / (1 + exp(-X)).
out(J) = σ(activation(J)).
activation(J) += out(I) * edge(I,J).

edge(input(X,Y),hidden(X+DX,Y+DY)) = weight(DX,DY).
weight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

Instead we can specify
the structure of keys

inside the definition of
edge.

15

More Neural
𝜎(X) = 1 / (1 + exp(-X)).
out(J) = σ(activation(J)).
activation(J) += out(I) * edge(I,J).

edge(input(X,Y),hidden(X+DX,Y+DY)) = weight(DX,DY).
weight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

The weight do not depend on
the absolute location of the

input, so this is a convolution
again.

15

Dyna Makes Algorithms Easy

16

Dyna Makes Algorithms Easy

• Gibbs, MCMC – flip variable, compute likelihood ratio, accept or reject

16

Dyna Makes Algorithms Easy

• Gibbs, MCMC – flip variable, compute likelihood ratio, accept or reject

• Iterative algorithms – loopy belief propagation, numerical
optimization

16

Dyna Makes Algorithms Easy

• Gibbs, MCMC – flip variable, compute likelihood ratio, accept or reject

• Iterative algorithms – loopy belief propagation, numerical
optimization

• Neural networks – computation graphs passing dense matrices

16

Dyna Makes Algorithms Easy

• Gibbs, MCMC – flip variable, compute likelihood ratio, accept or reject

• Iterative algorithms – loopy belief propagation, numerical
optimization

• Neural networks – computation graphs passing dense matrices

• Branch-and-bound, Davis–Putnam–Logemann–Loveland (DPLL)

16

Dyna Makes Algorithms Easy

• Gibbs, MCMC – flip variable, compute likelihood ratio, accept or reject

• Iterative algorithms – loopy belief propagation, numerical
optimization

• Neural networks – computation graphs passing dense matrices

• Branch-and-bound, Davis–Putnam–Logemann–Loveland (DPLL)

16

Dyna Makes Algorithms Easy

• Gibbs, MCMC – flip variable, compute likelihood ratio, accept or reject

• Iterative algorithms – loopy belief propagation, numerical
optimization

• Neural networks – computation graphs passing dense matrices

• Branch-and-bound, Davis–Putnam–Logemann–Loveland (DPLL)

• Implementations and more in:
• Dyna: Extending Datalog for modern AI. (Eisner & Filardo 2011)

• Dyna: A non-probabilistic language for probabilistic AI. (Eisner 2009)

16

How much can a declarative language
save us?

17

Implementing shortest path

18

Implementing shortest path

distance(X) min= edge(X, Y)
+ distance(Y).

distance(start) min= 0.
path_length = distance(end).

Dyna (Declarative)

18

Implementing shortest path

distance(X) min= edge(X, Y)
+ distance(Y).

distance(start) min= 0.
path_length = distance(end).

Dyna (Declarative) Java (Procedural)

queue = new FifoQueue<Pair<String, Float>>();
distances = new HashMap<String, Float>();
edges = new HashMap<Pair<String, String>,Float>();
// load edges
queue.push("start");
while(!queue.empty()) {

d = queue.pop();
for(e : edge) {

if(e.first().second().equals(d.first())) {
if(distance.get(e.first()) <

d.second() + e.second()) {
distance.put(e.first(),

d.second() + e.second());
queue.push(e.first());

}
}

}
}
path_length = distances.get("end");

18

Implementing shortest path

distance(X) min= edge(X, Y)
+ distance(Y).

distance(start) min= 0.
path_length = distance(end).

Dyna (Declarative) Java (Procedural)

queue = new PriorityQueue<String, Float>();
distances = new HashMap<String, Float>();
edges = new HashMap<Pair<String, String>,Float>();
// load edges
queue.push("start", 0);
while(!queue.empty()) {

d = queue.pop();
for(e : edge) {

if(e.first().second().equals(d.first())) {
n = d.second() + e.second();
if(distance.get(e.first()) < n) {

distance.put(e.first(), n);
queue.push(e.first(), n);

}
}

}
}
path_length = distances.get("end");

18

Implementing shortest path

distance(X) min= edge(X, Y)
+ distance(Y).

distance(start) min= 0.
path_length = distance(end).

Dyna (Declarative) Java (Procedural)

queue = new PriorityQueue<String, Float>();
distances = new HashMap<String, Float>();
edges = new HashMap<String,Map<String,Float>>();
// load edges
queue.push("start", 0);
while(!queue.empty()) {

d = queue.pop();
for(e : edge.get(d.first())) {

n = d.second() + e.second();
if(distance.get(e.first()) < n) {

distance.put(e.first(), n);
queue.push(e.first(), n);

}
}

}
path_length = distances.get("end");

18

Implementing shortest path

distance(X) min= edge(X, Y)
+ distance(Y).

distance(start) min= 0.
path_length = distance(end).

Dyna (Declarative) Java (Procedural)
placeIndex = new HashMap<String,Integer>();
queue = new PriorityQueue<Integer, Float>();
distances = new float[num_places];
edges = new float[num_places][num_places];
// load edges
queue.push(placesIndex.get("start"), 0);
while(!queue.empty()) {

d = queue.pop();
l = edges[d.first()];
for(j = 0; j < l.length; j++) {

n = d.second() + l[j];
if(distances[j] < n) {

distances[j] = n;
queue.push(j, n);

}
}

}
path_length = distances[placeIndex.get("end")];

18

Implementing shortest path

distance(X) min= edge(X, Y)
+ distance(Y).

distance(start) min= 0.
path_length = distance(end).

Dyna (Declarative) Java (Procedural)

18

placeIndex = new HashMap<String,Integer>();
edges = new float[num_places][num_places];
// load edges
float distance(from) {

if(from == placeIndex.get("start")) {
return 0;

}
l = edges[from];
r = infinity;
for(j = 0; j < l.length; j++) {

n = distance(j) + l[j];
if(n < r)

r = n;
}
return r;

}
path_length = distance(placeIndex.get("end"));

Implementing shortest path

distance(X) min= edge(X, Y)
+ distance(Y).

distance(start) min= 0.
path_length = distance(end).

Dyna (Declarative) Java (Procedural)

18

placeIndex = new HashMap<String,Integer>();
edges = new float[num_places][num_places];
// load edges
float distance(from) {

if(from == placeIndex.get("start")) {
return 0;

}
l = edges[from];
r = infinity;
for(j = 0; j < l.length; j++) {

n = distance(j) + l[j];
if(n < r)

r = n;
}
return r;

}
path_length = distance(placeIndex.get("end"));

A single Dyna program can
represent hundreds of possible

implementations.

Other implementations
(not shown here) include A*
and bidirectional search, and
choice of data structures to

support dynamic graphs

Given all of these implementations,

19

Given all of these implementations,
the problem is choice

The Matrix Reloaded (2003)19

If you are Neo, you have two choices

20

If you are Neo, you have two choices

• Take the Architect’s deal
• Restart the Matrix

• Let all the humans in Zion die
• But restart Zion with 16 females and 7 males (fight another day)

20

If you are Neo, you have two choices

• Take the Architect’s deal
• Restart the Matrix

• Let all the humans in Zion die
• But restart Zion with 16 females and 7 males (fight another day)

• Already tried this 5 times

20

If you are Neo, you have two choices

• Take the Architect’s deal
• Restart the Matrix

• Let all the humans in Zion die
• But restart Zion with 16 females and 7 males (fight another day)

• Already tried this 5 times

• Current argmax

20

If you are Neo, you have two choices

• Take the Architect’s deal
• Restart the Matrix

• Let all the humans in Zion die
• But restart Zion with 16 females and 7 males (fight another day)

• Already tried this 5 times

• Current argmax

• Follow “an emotion specifically designed to overwhelm logic & reason”
• Save Trinity

20

If you are Neo, you have two choices

• Take the Architect’s deal
• Restart the Matrix

• Let all the humans in Zion die
• But restart Zion with 16 females and 7 males (fight another day)

• Already tried this 5 times

• Current argmax

• Follow “an emotion specifically designed to overwhelm logic & reason”
• Save Trinity

• YOLO, figure this out as we go (unknown reward)

20

This raises the next question …

21

This raises the next question …

can machines love

21

This raises the next question …

can machines love

or at least make irrational choices

21

This raises the next question …

can machines love

or at least make irrational choices

The “Rational” Choice

21

This raises the next question …

can machines love

or at least make irrational choices

The “Rational” Choice The “Irrational” Choice
(Randomly sample)

21

This raises the next question …

can machines love

or at least make irrational choices

The “Rational” Choice The “Irrational” Choice
(Randomly sample)

21Exploitation Exploration

Outline

• Why Declarative Programming?

• Quick introduction to the Dyna language

• Automatic optimization of Dyna programs

22

ML PL

ML PL

response
output = 2

response
output = 1

23

Dynamic data
structure

Dyna

Dyna source code

(micro-example)

output max= input(I).

input("a") := 1.

input("b") := 2.

update
input("b") := 0

query
output

query
output

response
output = 2

response
output = 1

23

Dynamic data
structure

Dyna

compile

Dyna source code

(micro-example)

output max= input(I).

input("a") := 1.

input("b") := 2.

update
input("b") := 0

query
output

query
output

response
output = 2

response
output = 1

23

Dynamic data
structure

Dyna

compile

Dyna source code

(micro-example)

output max= input(I).

input("a") := 1.

input("b") := 2.

update
input("b") := 0

query
output

query
output

response
output = 2

response
output = 1

23

Dynamic data
structure

Dyna

compile

Dyna source code

(micro-example)

output max= input(I).

input("a") := 1.

input("b") := 2.

update
input("b") := 0

query
output

query
output

response
output = 2

response
output = 1

23

Dynamic data
structure

Dyna

compile

Dyna source code

(micro-example)

output max= input(I).

input("a") := 1.

input("b") := 2.

update
input("b") := 0

query
output

query
output

response
output = 2

response
output = 1

23

Dynamic data
structure

Dyna

compile

Dyna source code

(micro-example)

output max= input(I).

input("a") := 1.

input("b") := 2.

update
input("b") := 0

query
output

query
output

response
output = 2

response
output = 1

23

Dynamic data
structure

Dyna

compile

Dyna source code

(micro-example)

output max= input(I).

input("a") := 1.

input("b") := 2.

update
input("b") := 0

query
output

query
output

response
output = 2

response
output = 1

23

Dynamic data
structure

Dyna

compile

Dyna source code

(micro-example)

output max= input(I).

input("a") := 1.

input("b") := 2.

update
input("b") := 0

query
output

query
output

24

response
(via callback)

Dynamic data
structure

Tuning Dyna

I

query

update

Workload

24

response
(via callback)

Dynamic data
structure

Tuning Dyna

I

query

update

Workload

latency

24

response
(via callback)

Dynamic data
structure

Tuning Dyna

I

query

update

Workload

Solver has “knobs“ to tune

latency

24

response
(via callback)

Dynamic data
structure

Tuning Dyna

I

query

Optimizer

update

Workload

Solver has “knobs“ to tune

latency

24

response
(via callback)

Dynamic data
structure

Tuning Dyna

Example knob: eager or lazy updates?
e.g., dynamic max data structure

% Dyna:

output max= input(I).

Max-heap:
• O(log n) per update
• O(n) per batch update (“heapify”)

I

query

Optimizer

update

Workload

Solver has “knobs“ to tune

latency

24

response
(via callback)

Dynamic data
structure

Tuning Dyna

Example knob: eager or lazy updates?
e.g., dynamic max data structure

% Dyna:

output max= input(I).

Max-heap:
• O(log n) per update
• O(n) per batch update (“heapify”)

I

query

Optimizer

update

Workload

Solver has “knobs“ to tune

latency

24

response
(via callback)

Dynamic data
structure

Tuning Dyna

Example knob: eager or lazy updates?
e.g., dynamic max data structure

% Dyna:

output max= input(I).

Max-heap:
• O(log n) per update
• O(n) per batch update (“heapify”)

I

query

Optimizer

update

knob settings

Workload

Solver has “knobs“ to tune

latency

24

response
(via callback)

Dynamic data
structure

Tuning Dyna

Example knob: eager or lazy updates?
e.g., dynamic max data structure

% Dyna:

output max= input(I).

Max-heap:
• O(log n) per update
• O(n) per batch update (“heapify”)

I

query

Total cost knob setting
Average latency on workload

Optimizer

update

knob settings

Workload

Solver has “knobs“ to tune

latency

24

response
(via callback)

Dynamic data
structure

Tuning Dyna

Example knob: eager or lazy updates?
e.g., dynamic max data structure

% Dyna:

output max= input(I).

Max-heap:
• O(log n) per update
• O(n) per batch update (“heapify”)

I

query

Encourage earlier
jobs to finish first

Total cost knob setting
Average latency on workload

Optimizer

update

knob settings

Workload

Solver has “knobs“ to tune

latency

24

response
(via callback)

Dynamic data
structure

Tuning Dyna

Example knob: eager or lazy updates?
e.g., dynamic max data structure

% Dyna:

output max= input(I).

Max-heap:
• O(log n) per update
• O(n) per batch update (“heapify”)

I

query

urgency

Encourage earlier
jobs to finish first

Total cost knob setting
Average latency on workload

Optimizer

update

knob settings

Workload

Solver has “knobs“ to tune

latency

Off-line training

Fiddle
with knobs

Off-line training

Fiddle
with knobs

Run entire workload

Off-line training

Fiddle
with knobs

Run entire workload

Feedback

Off-line training

Fiddle
with knobs

Run entire workload

Feedback

• Reasonable way to tune knobs off-line (used by PhiPac, ATLAS, SATZilla)

Off-line training

Fiddle
with knobs

Run entire workload

Feedback

Slow!

• Reasonable way to tune knobs off-line (used by PhiPac, ATLAS, SATZilla)

Off-line training

Fiddle
with knobs

Run entire workload

Feedback

Slow!

• The inefficiency: this loop explores one policy per run.

• Reasonable way to tune knobs off-line (used by PhiPac, ATLAS, SATZilla)

Off-line training

Fiddle
with knobs

Run entire workload

Feedback

Slow!

• The inefficiency: this loop explores one policy per run.

• How do we tighten the loop to get feedback more often?

• Reasonable way to tune knobs off-line (used by PhiPac, ATLAS, SATZilla)

Off-line training

Fiddle
with knobs

Run entire workload

Feedback

Slow!

• The inefficiency: this loop explores one policy per run.

• How do we tighten the loop to get feedback more often?

Open up the solver

• Reasonable way to tune knobs off-line (used by PhiPac, ATLAS, SATZilla)

26

Inside the solver

response

queries &
updates

26

Inside the solver

agenda

response

queries &
updates

26

thread

Inside the solver

agenda

response

queries &
updates

26

thread

Inside the solver

agenda

pop
task

response

queries &
updates

26

thread

Inside the solver

agenda

% matrix multiplication

c(I,K) += a(I,J) * b(J,K).

pop
task

Task:
Compute c(I,4)for all I

response

queries &
updates

26

thread

Inside the solver

agenda

% matrix multiplication

c(I,K) += a(I,J) * b(J,K).

strategy

pop
task

Task:
Compute c(I,4)for all I

response

queries &
updates

26

thread

Inside the solver

agenda

% matrix multiplication

c(I,K) += a(I,J) * b(J,K).

strategy
Strategy:
for J in b(:,4):

for I in a(:,J):

c(I,4) += a(I,J) * b(:,4)

pop
task

Task:
Compute c(I,4)for all I

response

queries &
updates

26

thread

Inside the solver

agenda

% matrix multiplication

c(I,K) += a(I,J) * b(J,K).

strategy
Strategy:
for J in b(:,4):

for I in a(:,J):

c(I,4) += a(I,J) * b(:,4)

run

pop

new
tasks

computed
values

task

Task:
Compute c(I,4)for all I

response

queries &
updates

26

thread

Inside the solver

agenda

% matrix multiplication

c(I,K) += a(I,J) * b(J,K).

strategy
Strategy:
for J in b(:,4):

for I in a(:,J):

c(I,4) += a(I,J) * b(:,4)

run

pop

new
tasks

computed
values

task

Task:
Compute c(I,4)for all I

response

queries &
updates

26

thread

Inside the solver

agenda

% matrix multiplication

c(I,K) += a(I,J) * b(J,K).

strategy
Strategy:
for J in b(:,4):

for I in a(:,J):

c(I,4) += a(I,J) * b(:,4)

run

pop

new
tasks

computed
values

task

Task:
Compute c(I,4)for all I

response

queries &
updates

26

thread

Inside the solver

agenda

% matrix multiplication

c(I,K) += a(I,J) * b(J,K).

strategy
Strategy:
for J in b(:,4):

for I in a(:,J):

c(I,4) += a(I,J) * b(:,4)

run

pop

new
tasks

computed
values

memoize

cache

lookup

task

Task:
Compute c(I,4)for all I

response

queries &
updates

26

thread

Inside the solver

agenda

% matrix multiplication

c(I,K) += a(I,J) * b(J,K).

strategy
Strategy:
for J in b(:,4):

for I in a(:,J):

c(I,4) += a(I,J) * b(:,4)

Tasks on agenda can be
executed in any order!

Interpolates between eager
and lazy strategies

run

pop

new
tasks

computed
values

memoize

cache

lookup

task

Task:
Compute c(I,4)for all I

response

queries &
updates

26

thread

Inside the solver

agenda

% matrix multiplication

c(I,K) += a(I,J) * b(J,K).

strategy
Strategy:
for J in b(:,4):

for I in a(:,J):

c(I,4) += a(I,J) * b(:,4)

Tasks on agenda can be
executed in any order!

Interpolates between eager
and lazy strategies

run

pop

new
tasks

computed
values

choose!

memoize

cache

lookup

task

Task:
Compute c(I,4)for all I

response

queries &
updates

26

thread

Inside the solver

agenda

% matrix multiplication

c(I,K) += a(I,J) * b(J,K).

strategy
Strategy:
for J in b(:,4):

for I in a(:,J):

c(I,4) += a(I,J) * b(:,4)

Tasks on agenda can be
executed in any order!

Interpolates between eager
and lazy strategies

Tons of admissible strategies.
Each attempts to make progress

toward an answer to open queries

run

pop

new
tasks

computed
values

choose!

memoize

cache

lookup

task

Task:
Compute c(I,4)for all I

response

queries &
updates

26

thread

Inside the solver

agenda

% matrix multiplication

c(I,K) += a(I,J) * b(J,K).

strategy
Strategy:
for J in b(:,4):

for I in a(:,J):

c(I,4) += a(I,J) * b(:,4)

Tasks on agenda can be
executed in any order!

Interpolates between eager
and lazy strategies

Tons of admissible strategies.
Each attempts to make progress

toward an answer to open queries

run

pop

new
tasks

computed
values

choose!

memoize

cache

lookup

task

Task:
Compute c(I,4)for all I

response

queries &
updates

26

thread

Inside the solver

agenda

% matrix multiplication

c(I,K) += a(I,J) * b(J,K).

strategy
Strategy:
for J in b(:,4):

for I in a(:,J):

c(I,4) += a(I,J) * b(:,4)

Tasks on agenda can be
executed in any order!

Interpolates between eager
and lazy strategies

Tons of admissible strategies.
Each attempts to make progress

toward an answer to open queries

run

pop

new
tasks

computed
values

choose!

memoize

cache

lookup

Memos are optional.
Solver can create or flush

memos anytime.
(memos save recomputation,

but require maintenance)

task

Task:
Compute c(I,4)for all I

response

queries &
updates

26

thread

Inside the solver

agenda

% matrix multiplication

c(I,K) += a(I,J) * b(J,K).

strategy
Strategy:
for J in b(:,4):

for I in a(:,J):

c(I,4) += a(I,J) * b(:,4)

Tasks on agenda can be
executed in any order!

Interpolates between eager
and lazy strategies

Tons of admissible strategies.
Each attempts to make progress

toward an answer to open queries

run

pop

new
tasks

computed
values

choose!

choose!
memoize

cache

lookup

Memos are optional.
Solver can create or flush

memos anytime.
(memos save recomputation,

but require maintenance)

task

Task:
Compute c(I,4)for all I

response

queries &
updates

27

Strategy options

Many strong interactions among decisions

27

Strategy options
Solver should systematize all the reasonable implementation tricks that programmers
might use and make them work together correctly.

Many strong interactions among decisions

27

• Parallelizing independent computations

Strategy options
Solver should systematize all the reasonable implementation tricks that programmers
might use and make them work together correctly.

Many strong interactions among decisions

27

• Parallelizing independent computations
• Ordering dependent computations

Strategy options
Solver should systematize all the reasonable implementation tricks that programmers
might use and make them work together correctly.

Many strong interactions among decisions

27

• Parallelizing independent computations
• Ordering dependent computations

• Join strategies

Strategy options
Solver should systematize all the reasonable implementation tricks that programmers
might use and make them work together correctly.

Many strong interactions among decisions

27

• Parallelizing independent computations
• Ordering dependent computations

• Join strategies
• Forward vs. backward chaining (update-driven vs. query-driven)

Strategy options
Solver should systematize all the reasonable implementation tricks that programmers
might use and make them work together correctly.

Many strong interactions among decisions

27

• Parallelizing independent computations
• Ordering dependent computations

• Join strategies
• Forward vs. backward chaining (update-driven vs. query-driven)
• Dynamically identify unnecessary computation

Strategy options
Solver should systematize all the reasonable implementation tricks that programmers
might use and make them work together correctly.

Many strong interactions among decisions

27

• Parallelizing independent computations
• Ordering dependent computations

• Join strategies
• Forward vs. backward chaining (update-driven vs. query-driven)
• Dynamically identify unnecessary computation

• Short-circuiting, branch-and-bound/A*, watched variables

Strategy options
Solver should systematize all the reasonable implementation tricks that programmers
might use and make them work together correctly.

Many strong interactions among decisions

27

• Parallelizing independent computations
• Ordering dependent computations

• Join strategies
• Forward vs. backward chaining (update-driven vs. query-driven)
• Dynamically identify unnecessary computation

• Short-circuiting, branch-and-bound/A*, watched variables
• Consolidating related work

Strategy options
Solver should systematize all the reasonable implementation tricks that programmers
might use and make them work together correctly.

Many strong interactions among decisions

27

• Parallelizing independent computations
• Ordering dependent computations

• Join strategies
• Forward vs. backward chaining (update-driven vs. query-driven)
• Dynamically identify unnecessary computation

• Short-circuiting, branch-and-bound/A*, watched variables
• Consolidating related work

• Static or dynamic batching (consolidating similar tasks, including GPU)

Strategy options
Solver should systematize all the reasonable implementation tricks that programmers
might use and make them work together correctly.

Many strong interactions among decisions

27

• Parallelizing independent computations
• Ordering dependent computations

• Join strategies
• Forward vs. backward chaining (update-driven vs. query-driven)
• Dynamically identify unnecessary computation

• Short-circuiting, branch-and-bound/A*, watched variables
• Consolidating related work

• Static or dynamic batching (consolidating similar tasks, including GPU)
• Inlining depth (consolidating caller-callee)

Strategy options
Solver should systematize all the reasonable implementation tricks that programmers
might use and make them work together correctly.

Many strong interactions among decisions

27

• Parallelizing independent computations
• Ordering dependent computations

• Join strategies
• Forward vs. backward chaining (update-driven vs. query-driven)
• Dynamically identify unnecessary computation

• Short-circuiting, branch-and-bound/A*, watched variables
• Consolidating related work

• Static or dynamic batching (consolidating similar tasks, including GPU)
• Inlining depth (consolidating caller-callee)

• Storage

Strategy options
Solver should systematize all the reasonable implementation tricks that programmers
might use and make them work together correctly.

Many strong interactions among decisions

27

• Parallelizing independent computations
• Ordering dependent computations

• Join strategies
• Forward vs. backward chaining (update-driven vs. query-driven)
• Dynamically identify unnecessary computation

• Short-circuiting, branch-and-bound/A*, watched variables
• Consolidating related work

• Static or dynamic batching (consolidating similar tasks, including GPU)
• Inlining depth (consolidating caller-callee)

• Storage
• Memoization policy; choose low-level data structures

Strategy options
Solver should systematize all the reasonable implementation tricks that programmers
might use and make them work together correctly.

Many strong interactions among decisions

The Dyna solver

28

The Dyna solver
• Lots of challenges in defining this giant space while preserving

correctness

28

The Dyna solver
• Lots of challenges in defining this giant space while preserving

correctness

• Most systems avoid choices. We embrace choice because we have
machine learning to choose intelligently.

28

The Dyna solver
• Lots of challenges in defining this giant space while preserving

correctness

• Most systems avoid choices. We embrace choice because we have
machine learning to choose intelligently.

• Further reading
• Mixed-chaining / arbitrary memoization (Filardo & Eisner, 2012)
• Set-at-a-time inference (Filardo & Eisner, 2017, in preparation)

28

The Dyna solver
• Lots of challenges in defining this giant space while preserving

correctness

• Most systems avoid choices. We embrace choice because we have
machine learning to choose intelligently.

• Further reading
• Mixed-chaining / arbitrary memoization (Filardo & Eisner, 2012)
• Set-at-a-time inference (Filardo & Eisner, 2017, in preparation)

• Lots of progress to come!

28

The Dyna solver
• Lots of challenges in defining this giant space while preserving

correctness

• Most systems avoid choices. We embrace choice because we have
machine learning to choose intelligently.

• Further reading
• Mixed-chaining / arbitrary memoization (Filardo & Eisner, 2012)
• Set-at-a-time inference (Filardo & Eisner, 2017, in preparation)

• Lots of progress to come!
• Nathaniel Wesley Filardo is tying up many loose ends in his thesis

(September 2017)

28

The Dyna solver
• Lots of challenges in defining this giant space while preserving

correctness

• Most systems avoid choices. We embrace choice because we have
machine learning to choose intelligently.

• Further reading
• Mixed-chaining / arbitrary memoization (Filardo & Eisner, 2012)
• Set-at-a-time inference (Filardo & Eisner, 2017, in preparation)

• Lots of progress to come!
• Nathaniel Wesley Filardo is tying up many loose ends in his thesis

(September 2017)
• He’s on the job market!

28

Sequential choices at runtime (some stochastic)

Sequential choices at runtime (some stochastic)
edge(…)

query

Sequential choices at runtime (some stochastic)
edge(…)

query

…

…

Sequential choices at runtime (some stochastic)
edge(…)

query

…

…

…

Sequential choices at runtime (some stochastic)
edge(…)

query

answer from
edge rules
using join
strategy 1

join strategy 2

…

…

…

Sequential choices at runtime (some stochastic)
edge(…)

query

answer from
edge rules
using join
strategy 1

join strategy 2

…

…

…

edge(x,Y)

for some x

…

…

Sequential choices at runtime (some stochastic)
edge(…)

query
edge(x,Y)

for some x
answer will be

an iterator over
outgoing edges
(adjacency list)

answer from
edge rules
using join
strategy 1

join strategy 2

……

…

…

Sequential choices at runtime (some stochastic)
edge(…)

query
edge(x,Y)

for some x
answer will be

an iterator over
outgoing edges
(adjacency list)

hash(x)/H
≤ 0.2 look up answer in dense array A4 indexed by x

(where x is an integer or is represented as one)

answer from
edge rules
using join
strategy 1

join strategy 2

……

…

…

Sequential choices at runtime (some stochastic)
edge(…)

query
edge(x,Y)

for some x
answer will be

an iterator over
outgoing edges
(adjacency list)

hash(x)/H
≤ 0.2 look up answer in dense array A4 indexed by x

(where x is an integer or is represented as one)

`

look for
answer

in sparse
hash

table H5

answer from
edge rules
using join
strategy 1

join strategy 2

……

…

…

Sequential choices at runtime (some stochastic)
edge(…)

query
edge(x,Y)

for some x
answer will be

an iterator over
outgoing edges
(adjacency list)

hash(x)/H
≤ 0.2 look up answer in dense array A4 indexed by x

(where x is an integer or is represented as one)

`

look for
answer

in sparse
hash

table H5

answer from
edge rules
using join
strategy 1

join strategy 2

cached return
answer

……

…

…

Sequential choices at runtime (some stochastic)
edge(…)

query
edge(x,Y)

for some x
answer will be

an iterator over
outgoing edges
(adjacency list)

hash(x)/H
≤ 0.2 look up answer in dense array A4 indexed by x

(where x is an integer or is represented as one)

`

look for
answer

in sparse
hash

table H5

answer from
edge rules
using join
strategy 1

join strategy 2

cached return
answer

query edge(X,Y)
and filter to X=x

……

…

…

Sequential choices at runtime (some stochastic)
edge(…)

query
edge(x,Y)

for some x
answer will be

an iterator over
outgoing edges
(adjacency list)

hash(x)/H
≤ 0.2 look up answer in dense array A4 indexed by x

(where x is an integer or is represented as one)

`

look for
answer

in sparse
hash

table H5

answer from
edge rules
using join
strategy 1

join strategy 2

cached return
answer

query edge(X,Y)
and filter to X=x

return
answer

memoize
& return

……

…

…

z

Sequential choices at runtime (some stochastic)
edge(…)

query
edge(x,Y)

for some x
answer will be

an iterator over
outgoing edges
(adjacency list)

hash(x)/H
≤ 0.2 look up answer in dense array A4 indexed by x

(where x is an integer or is represented as one)

`

look for
answer

in sparse
hash

table H5

answer from
edge rules
using join
strategy 1

join strategy 2

cached return
answer

query edge(X,Y)
and filter to X=x

return
answer

memoize
& return

……

…

…

Policy probabilities that are tuned over
time (typically approaching 0 or 1)

31

Policy probabilities can be sensitive to context of task

31

Stochastically conditioned on the following information (features).

Policy probabilities can be sensitive to context of task

31

Stochastically conditioned on the following information (features).

• Task characteristics
- What type of task?
- What are the task parameters?
- Who requested the task?

Policy probabilities can be sensitive to context of task

31

Stochastically conditioned on the following information (features).

• Task characteristics
- What type of task?
- What are the task parameters?
- Who requested the task?

• Dataflow
- What depends on this task (children)?
- What does this task depend on (parents)?

Policy probabilities can be sensitive to context of task

31

Stochastically conditioned on the following information (features).

• Task characteristics
- What type of task?
- What are the task parameters?
- Who requested the task?

• Dataflow
- What depends on this task (children)?
- What does this task depend on (parents)?

• Agenda characteristics
- Are there a lot of open queries?
- What’s on the agenda? How long has it been there?

Policy probabilities can be sensitive to context of task

31

Stochastically conditioned on the following information (features).

• Task characteristics
- What type of task?
- What are the task parameters?
- Who requested the task?

• Dataflow
- What depends on this task (children)?
- What does this task depend on (parents)?

• Agenda characteristics
- Are there a lot of open queries?
- What’s on the agenda? How long has it been there?

• Cache characteristics
- Statistics: number, hit rate, frequency, & recency of memos (broken down by type)

Policy probabilities can be sensitive to context of task

32

Tuning probabilities

32

query edge(X,Y)
and filter to X=x

return
answer

memoize
& return

Tuning probabilities

32

query edge(X,Y)
and filter to X=x

return
answer

memoize
& return

Tuning probabilities

If we knew the long-term cost
of each action in context, we
could update the policy now!

32

query edge(X,Y)
and filter to X=x

return
answer

memoize
& return

Tuning probabilities

If we knew the long-term cost
of each action in context, we
could update the policy now!

32

query edge(X,Y)
and filter to X=x

return
answer

memoize
& return

hypothetically, fork state
and run finish workload

Tuning probabilities

If we knew the long-term cost
of each action in context, we
could update the policy now!

32

query edge(X,Y)
and filter to X=x

return
answer

memoize
& return

hypothetically, fork state
and run finish workload

Tuning probabilities

If we knew the long-term cost
of each action in context, we
could update the policy now!

Slow!

32

query edge(X,Y)
and filter to X=x

return
answer

memoize
& return

Use ML to predict
future costs!

hypothetically, fork state
and run finish workload

Tuning probabilities

If we knew the long-term cost
of each action in context, we
could update the policy now!

Slow!

32

query edge(X,Y)
and filter to X=x

return
answer

memoize
& return

Use ML to predict
future costs!

Generalize from past
experience to new

situations

hypothetically, fork state
and run finish workload

Tuning probabilities

If we knew the long-term cost
of each action in context, we
could update the policy now!

Slow!

32

query edge(X,Y)
and filter to X=x

return
answer

memoize
& return

Use ML to predict
future costs!

Generalize from past
experience to new

situations

hypothetically, fork state
and run finish workload

Tuning probabilities

If we knew the long-term cost
of each action in context, we
could update the policy now!

Slow!

Temporal difference learning

Temporal difference learning

Temporal difference learning

Approximate dynamic programming

Temporal difference learning

Approximate dynamic programmingMake estimator agree with itself

Actor-critic policy gradient

Actor-critic policy gradient

Actor-critic policy gradient

Says increase the probability
of lower cost actions.

Actor-critic policy gradient

Says increase the probability
of lower cost actions.

Actor-critic policy gradient

Says increase the probability
of lower cost actions.

update q

35

Summary

35

Summary

• Declarative languages lend themselves to automated optimization
because their solvers have a lot of freedom.

35

Summary

• Declarative languages lend themselves to automated optimization
because their solvers have a lot of freedom.

• Tuning such as solver is a sequential decision making problem that
can be tuned with online reinforcement learning techniques.

35

Summary

• Declarative languages lend themselves to automated optimization
because their solvers have a lot of freedom.

• Tuning such as solver is a sequential decision making problem that
can be tuned with online reinforcement learning techniques.

• Dyna
• Has been designed from the ground up be as flexible as possible.
• A powerful language for specifying machine learning applications.

35

Summary

• Declarative languages lend themselves to automated optimization
because their solvers have a lot of freedom.

• Tuning such as solver is a sequential decision making problem that
can be tuned with online reinforcement learning techniques.

• Dyna
• Has been designed from the ground up be as flexible as possible.
• A powerful language for specifying machine learning applications.

Check out the paper! Lots of great technical details in the paper that
didn't have time to get into.

State of the language

• We have to two language prototypes

State of the language

• We have to two language prototypes
• Dyna 1 prototype (2005) was used in Jason’s lab, fueling a dozen

NLP papers!

State of the language

• We have to two language prototypes
• Dyna 1 prototype (2005) was used in Jason’s lab, fueling a dozen

NLP papers!
• Dyna 2 prototype (2013) was used for teaching an NLP course to

linguists with no programming background.

State of the language

• We have to two language prototypes
• Dyna 1 prototype (2005) was used in Jason’s lab, fueling a dozen

NLP papers!
• Dyna 2 prototype (2013) was used for teaching an NLP course to

linguists with no programming background.
• Both were inefficient because they used too many one-size-fits-all

strategies.

State of the language

Thanks!
Questions? Comments?

@xtimv

@matthewfl

http://dyna.org

Hire Wes Filardo!
http://cs.jhu.edu/~nwf

http://dyna.org/

38

Loop order, sparse vector product example

40

41

Don’t do
and
even wait until all of

Join strategies
• Outer loop on b(J,4), inner loop a(I,J)
• Outer loop on a(I,J), inner loop b(J,K), filter K==4
• Sort a and b on J and use Baeza-Yates intersection
• What if we can’t loop over b? e.g.,

b(I,K) = X*Y.

• In natural language parsing with the CKY algorithm, an
unexpected loop order turned out to be 7-9x faster than the
loop order presented in most textbooks because of cache
locality (Dunlop et al. 2010).

% matrix multiplication

c(I,K) += a(I,J) * b(J,K).

42

Don’t do
and
even wait until all of

Memoization and data structures
• Do we store results for future use?

(tradeoff: memos must be kept up-to-date!)
• What data structure?

43

Don’t do
and
even wait until all of

Batching, answering bigger queries/updates
• Batch pending c queries.
• Preemptively compute a broader query, c(I,K)

Use clever mat-mul alg. (sparse or dense?)

44

Don’t do
and
even wait until all of

Inlining
• Inline a and/or b queries.
• Bypass agenda and route directly to consumer, e.g.,

d(I) max= c(I,K).

• Reduce overhead of method calls
• Reduce overhead of task indirection through agenda

Mixed policies

• Mixed task strategies selection
• Policy will encounter similar tasks frequently

• Mixed storage strategies
• e.g., use a hash table, prefix trie, dense array, …

• Problem: random choice of strategy might not be consistent
• E.g. might write to A and read from B (because of randomness)

45

Storage

46

edge("a", "b") = 1.

edge("b", "c") = 2.

edge("c", "d") = 5.

pathCost("a", "d") = 8.

pathCost("a", "c") = 3.

Queries
? edge("a","b")

? edge("a",Y)

? edge(X,"b")

? edge(X,Y)

? edge(X,X)

? edge(X,Y) >= 10

What’s the weight of edge a->b
Outgoing edges from a
Incoming edges to b
List all edges
List all self loops
Edges with weight >= 10

Name of map

key

value
Named maps
key -> value

Implementations?
Hash cons, trie (different orders on keys),
dense vs. sparse, sorted (what to sort on)

Efficiency depends on
- Frequency of different queries
- Overhead of read/writes
- Sizes
- Lower-level thresholds

Mixed storage solution

47

Hash table Trie 1->2 Trie 2->1

hash(edge("a", "b")) / 2^32 ~ Uniform(0,1)

edge(:any,:any)

Small, temporary
data duplication

edge(:int,:int) edge(:str,:str)

edge("a",:str)

pathCost(:any,:any)

:any

Mixed storage solution

47

Hash table Trie 1->2 Trie 2->1

hash(edge("a", "b")) / 2^32 ~ Uniform(0,1)

edge(:any,:any)

Small, temporary
data duplication

edge(:int,:int) edge(:str,:str)

edge("a",:str)

pathCost(:any,:any)

:any

Mixed storage solution

47

Hash table Trie 1->2 Trie 2->1

hash(edge("a", "b")) / 2^32 ~ Uniform(0,1)

edge(:any,:any)

Small, temporary
data duplication

edge(:int,:int) edge(:str,:str)

edge("a",:str)

pathCost(:any,:any)

:any

48

Learning to choose a good strategy

thread

agenda

strategy
run

pop

new
tasks

computed
values

memoize

cache

lookup

task

response

queries &
updates

48

Learning to choose a good strategy

thread

agenda

strategy
run

pop

new
tasks

computed
values

choose!

choose!
memoize

cache

lookup

task

response

queries &
updates

48

1. Bandit: Each time we execute a task (e.g., compute
c(I,j) for an argument j):

Learning to choose a good strategy

thread

agenda

strategy
run

pop

new
tasks

computed
values

choose!

choose!
memoize

cache

lookup

task

response

queries &
updates

48

1. Bandit: Each time we execute a task (e.g., compute
c(I,j) for an argument j):
• Randomly try one of the available strategies

(explore) according to some probability distribution

Learning to choose a good strategy

thread

agenda

strategy
run

pop

new
tasks

computed
values

choose!

choose!
memoize

cache

lookup

task

response

queries &
updates

48

1. Bandit: Each time we execute a task (e.g., compute
c(I,j) for an argument j):
• Randomly try one of the available strategies

(explore) according to some probability distribution
• Bias this distribution in favor of strategies with

lower measured cost (exploit).

Learning to choose a good strategy

thread

agenda

strategy
run

pop

new
tasks

computed
values

choose!

choose!
memoize

cache

lookup

task

response

queries &
updates

48

1. Bandit: Each time we execute a task (e.g., compute
c(I,j) for an argument j):
• Randomly try one of the available strategies

(explore) according to some probability distribution
• Bias this distribution in favor of strategies with

lower measured cost (exploit).
2. Contextual bandit: Allows distribution to depend on task

arguments (e.g., j) and solver state.

Learning to choose a good strategy

thread

agenda

strategy
run

pop

new
tasks

computed
values

choose!

choose!
memoize

cache

lookup

task

response

queries &
updates

48

1. Bandit: Each time we execute a task (e.g., compute
c(I,j) for an argument j):
• Randomly try one of the available strategies

(explore) according to some probability distribution
• Bias this distribution in favor of strategies with

lower measured cost (exploit).
2. Contextual bandit: Allows distribution to depend on task

arguments (e.g., j) and solver state.
3. Reinforcement learning: Accounts for delayed costs of

actions.

Learning to choose a good strategy

thread

agenda

strategy
run

pop

new
tasks

computed
values

choose!

choose!
memoize

cache

lookup

task

response

queries &
updates

Back to online training…

Back to online training…

Run entire workload

Feedback

Fiddle
with policy

Solver Actions

Solver Actions

Workload

Solver Actions

Policy actions

Workload

Rewrite the objective function

TODO inline in parens
use underbrace to give it a name

Add Jason integral picture?

Rewrite the objective function

Workload i

TODO inline in parens
use underbrace to give it a name

Add Jason integral picture?

Rewrite the objective function

Workload i

TODO inline in parens
use underbrace to give it a name

Add Jason integral picture?

Rewrite the objective function

Workload i

Actions t

TODO inline in parens
use underbrace to give it a name

Add Jason integral picture?

Rewrite in terms of the
policy’s time scale (used in RL)

Rewrite the objective function

Workload i

Actions t

TODO inline in parens
use underbrace to give it a name

Add Jason integral picture?

Rewrite in terms of the
policy’s time scale (used in RL)

Rewrite the objective function

Each step tries to
decrease the load

Workload i

Actions t

TODO inline in parens
use underbrace to give it a name

Add Jason integral picture?

Life of π

Life of π

Life of π

Life of π

Life of π

Use ML to predict
future costs!

Life of π

Use ML to predict
future costs!

Life of π

Generalize from past
experience to new

situations

Use ML to predict
future costs!

Life of π

Generalize from past
experience to new

situations

Use ML to predict
future costs!

Life of π

Generalize from past
experience to new

situations

Features:
- Memos (number, hit rate, frequency, recency)
- Pending tasks (number, age)
- Current load (proximity-to-completion heuristics)
- Dataflow graph

- Will this be used again?
- Are other jobs blocking on it?

Back to π

Back to π

Back to π

Back to π

Back to π

What should π do in this state?

Back to π

What should π do in this state?

Back to π

What should π do in this state?

Predicting the future requires
richer features than simply

learning to take good actions.

Back to π

What should π do in this state?

Predicting the future requires
richer features than simply

learning to take good actions.

We need π to be really fast to execute!

54

54

Run entire workload

Feedback

Fiddle
with policy

54

Run entire workload

Feedback

Fiddle
with policy

54

Run entire workload

Feedback

Fiddle
with policy

54

Run entire workload

Feedback

Fiddle
with policy

update

Feedback

54

Run entire workload

Feedback

Fiddle
with policy

updateupdate

Feedback

