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Declarative Programming

➢ Examples: SQL, Prolog/Datalog, Mathematica, Regex, TensorFlow/Theano
➢ Solver seeks an efficient strategy (e.g., SQL query planning)

A programming paradigm where the 
programmer specifies what to compute

and leaves how to compute it to a solver.
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Why declarative programming?

• Many ML algorithms have a concise declarative program

• There are many choices to make when writing a fast program
• Loop orders
• Data structures  (e.g., hash map, dense array, linked list)
• Global execution strategy   (e.g., depth vs. breadth-first search)
• Parallelization opportunities  

• Manually experimenting with all possibilities is time consuming
• Programmers usually  only implement one

• Researchers don’t have time to optimize the efficiency of their code
• We can do better with automatic optimization
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Why not optimize Python/Java/C++ etc.?

• Less flexibility
• Choices of loop orders / data structures already decided by the human 

programmer

• Semantics of the program are not invariant to
• Changing execution and loop order

• Eager vs. lazy evaluation, top-down vs bottom-up evaluation.

• Data structures

• Concurrency

• Difficult to reliably discover long range interactions in a program

6
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What is Dyna?

• Declarative language 

• Based on weighted logic programming

• Prolog / Datalog like syntax
• Uses pattern matching to define computation graphs

• Reactive

• Dyna programs are close to their mathematical description
• Similar to functional programs

7
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Dyna Day 1
a = b * c.

a will be kept up to date if b or c changes.  (Reactive)

b += x.

b += y. equivalent to b = x+y. (almost)

b is a sum of two variables.   Also kept up to date.

c += z(1).

c += z(2).

c += z(3).

c += z("four").

c += z(foo(bar,5)). c is a sum of all

defined z(…) values. 

a “patterns”
the capitalized N
matches anything

c += z(N).
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Prolog has Horn clauses:

a(I,K) :- b(I,J) , c(J,K).

Dyna has “Horn equations”:

a(I,K) += b(I,J) * c(J,K).

Dyna vs. Prolog

prove a value for it
e.g., a real number,
but could be any term

definition from other values
b*c only has value when b and c do
if no values enter into +=, then a gets no value

Like Prolog:
Allow nested terms
Syntactic sugar for lists, etc.
Turing-complete

Unlike Prolog:
Terms can have values
Terms are evaluated in place
Not just backtracking!
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Shortest path

distance(X)     min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

edge("a", "b") = 10.
edge("b", "c") = 2.
edge("c", "d") = 7.
edge("d", "b") = 1.
start = "a".
end = "d".
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Shortest path

distance(X)     min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

11

Variables not 
present in the head 
of an expression are 
aggregated over like 

with the dot 
product example.



Shortest path

distance(X)     min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

Here the “min=“
aggregator only 

keeps the 
minimal value 
that we have  

computed
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Shortest path

distance(X)     min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

Note: Aggregation 
was already present 
in our mathematical 

definition.
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distance(start) min= 0.
path_length := distance(end).

11

? path_length

After this converges we can query the state of the Dyna program.
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Shortest path

distance(X)     min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

11

? path_length
? distance("c")

After this converges we can query the state of the Dyna program.

The distance 
of some 

other vertex
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11
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Shortest path

distance(X)     min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

11

? path_length
? distance("c")
? distance(X)
? distance(X) > 7

After this converges we can query the state of the Dyna program.

All the vertices more 
than 7 away



Shortest path

distance(X)     min= edge(X, Y) + distance(Y).
distance(start) min= 0.
path_length := distance(end).

11

? path_length
? distance("c")
? distance(X)
? distance(X) > 7
? edge("a",X)

After this converges we can query the state of the Dyna program.

All of the edges 
leaving "a"
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Aggregators
• Associative/commutative:

• b += a(X).  % number

• c max= a(X).

• q |= p(X).  % boolean

• r &= p(X).

• Require uniqueness:
• d = b+c.

• Last one wins:
• fly(X) := true if bird(X).

• fly(X) := false if penguin(X).

• fly(bigbird) := false.

• Choose any value:
• e ?= b.

• e ?= c.

• User definable aggregators
• a(X) smiles= b(X, Z).

• (Just define all of the operation of 
an commutative semigroup)
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Input image

Convolution output

Neural Convolutional Layer

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
13

Learned 
feature 
weights



Input image

Convolution output

Neural Convolutional Layer

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
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Some 
nonlinearity



Input image

Convolution output

Neural Convolutional Layer

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
13

Convolution 
output



Neural Convolutional layer

(activation(I, J)).
(X) := 1 / (1 + exp(-X)).
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Neural Convolutional layer

𝜎𝜎(X) := 1 / (1 + exp(-X)).
= σ(activation(I, J)).
activation(I, J) += input(I + M, J + N) * weight(M, N).

weight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

Summation became an 
aggregator
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Neural Convolutional layer

𝜎𝜎(X) := 1 / (1 + exp(-X)).
= σ(activation(I, J)).
activation(I, J) += input(I + M, J + N) * weight(M, N).

weight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

We can easily 
define rules over 

ℝ → ℝ

14



Neural Convolutional layer

𝜎𝜎(X) := 1 / (1 + exp(-X)).
= σ(activation(I, J)).
activation(I, J) += input(I + M, J + N) * weight(M, N).

weight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

14

Our ranges over 𝑚
and 𝑛 are reflected in 
the shape of weight



Neural Convolutional layer

𝜎𝜎(X) := 1 / (1 + exp(-X)).
= σ(activation(I, J)).
activation(I, J) += input(I + M, J + N) * weight(M, N).

weight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

Here keys are integers but 
we can also support more 

complicated structures

14



More Neural
𝜎(X) = 1 / (1 + exp(-X)).   
out(J) = σ(activation(J)).
activation(J) += out(I) * edge(I,J).
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More Neural
𝜎(X) = 1 / (1 + exp(-X)).   
out(J) = σ(activation(J)).
activation(J) += out(I) * edge(I,J).

All weights have been 
rolled into the edges 
connecting neurons
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More Neural
𝜎(X) = 1 / (1 + exp(-X)).   
out(J) = σ(activation(J)).
activation(J) += out(I) * edge(I,J).

The output of a neuron is 
our nonlinearity applied 
to the sum of its inputs

15



More Neural
𝜎(X) = 1 / (1 + exp(-X)).   
out(J) = σ(activation(J)).
activation(J) += out(I) * edge(I,J).

Note: nowhere in 
this program do we 
specify the form of 
our variables I, J
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More Neural
𝜎(X) = 1 / (1 + exp(-X)).   
out(J) = σ(activation(J)).
activation(J) += out(I) * edge(I,J).

edge(input(X,Y),hidden(X+DX,Y+DY)) = weight(DX,DY).
weight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

Instead we can specify 
the structure of keys 

inside the definition of 
edge.  
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More Neural
𝜎(X) = 1 / (1 + exp(-X)).   
out(J) = σ(activation(J)).
activation(J) += out(I) * edge(I,J).

edge(input(X,Y),hidden(X+DX,Y+DY)) = weight(DX,DY).
weight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

The weight do not depend on 
the absolute location of the 

input, so this is a convolution 
again.

15
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Dyna Makes Algorithms Easy

• Gibbs, MCMC – flip variable, compute likelihood ratio, accept or reject

• Iterative algorithms – loopy belief propagation, numerical 
optimization

• Neural networks – computation graphs passing dense matrices

• Branch-and-bound, Davis–Putnam–Logemann–Loveland (DPLL)

• Implementations and more in:
• Dyna: Extending Datalog for modern AI. (Eisner & Filardo 2011)

• Dyna: A non-probabilistic language for probabilistic AI. (Eisner 2009)

16



How much can a declarative language 
save us?
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Implementing shortest path

distance(X) min= edge(X, Y) 
+ distance(Y).

distance(start) min= 0.
path_length = distance(end).

Dyna (Declarative) Java (Procedural)

queue = new FifoQueue<Pair<String, Float>>();
distances = new HashMap<String, Float>();
edges = new HashMap<Pair<String, String>,Float>();
// load edges
queue.push("start");
while(!queue.empty()) {

d = queue.pop();
for(e : edge) {

if(e.first().second().equals(d.first())) {
if(distance.get(e.first()) < 

d.second() + e.second()) {
distance.put(e.first(),

d.second() + e.second());
queue.push(e.first());

}
}

}
}
path_length = distances.get("end");
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Implementing shortest path

distance(X) min= edge(X, Y) 
+ distance(Y).

distance(start) min= 0.
path_length = distance(end).

Dyna (Declarative) Java (Procedural)

queue = new PriorityQueue<String, Float>();
distances = new HashMap<String, Float>();
edges = new HashMap<Pair<String, String>,Float>(); 
// load edges
queue.push("start", 0);
while(!queue.empty()) {

d = queue.pop();
for(e : edge) {

if(e.first().second().equals(d.first())) {
n = d.second() + e.second();
if(distance.get(e.first()) < n) {

distance.put(e.first(), n);
queue.push(e.first(), n);

}
}

}
}
path_length = distances.get("end");
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Implementing shortest path

distance(X) min= edge(X, Y) 
+ distance(Y).

distance(start) min= 0.
path_length = distance(end).

Dyna (Declarative) Java (Procedural)

queue = new PriorityQueue<String, Float>();
distances = new HashMap<String, Float>();
edges = new HashMap<String,Map<String,Float>>(); 
// load edges
queue.push("start", 0);
while(!queue.empty()) {

d = queue.pop();
for(e : edge.get(d.first())) {

n = d.second() + e.second();
if(distance.get(e.first()) < n) {

distance.put(e.first(), n);
queue.push(e.first(), n);

}
}

}
path_length = distances.get("end");
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Implementing shortest path

distance(X) min= edge(X, Y) 
+ distance(Y).

distance(start) min= 0.
path_length = distance(end).
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while(!queue.empty()) {

d = queue.pop();
l = edges[d.first()];
for(j = 0; j < l.length; j++) {

n = d.second() + l[j];
if(distances[j] < n) {

distances[j] = n;
queue.push(j, n);

}
}

}
path_length = distances[placeIndex.get("end")];
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if(from == placeIndex.get("start")) {
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}
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Implementing shortest path

distance(X) min= edge(X, Y) 
+ distance(Y).

distance(start) min= 0.
path_length = distance(end).

Dyna (Declarative) Java (Procedural)

18

placeIndex = new HashMap<String,Integer>();
edges = new float[num_places][num_places]; 
// load edges
float distance(from) {

if(from == placeIndex.get("start")) {
return 0;

}
l = edges[from];
r = infinity;
for(j = 0; j < l.length; j++) {

n = distance(j) + l[j];
if(n < r)

r = n;
}
return r;

}
path_length = distance(placeIndex.get("end"));

A single Dyna program can 
represent hundreds of possible 

implementations.

Other implementations
(not shown here) include A* 
and bidirectional search, and 
choice of data structures to 

support dynamic graphs
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If you are Neo, you have two choices

• Take the Architect’s deal
• Restart the Matrix

• Let all the humans in Zion die
• But restart Zion with 16 females and 7 males (fight another day)

• Already tried this 5 times

• Current argmax

• Follow “an emotion specifically designed to overwhelm logic & reason”
• Save Trinity

• YOLO, figure this out as we go (unknown reward)

20
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Outline

• Why Declarative Programming?

• Quick introduction to the Dyna language

• Automatic optimization of Dyna programs
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e.g., dynamic max data structure

% Dyna:

output max= input(I).

Max-heap:
• O(log n) per update
• O(n) per batch update (“heapify”)

I

query 
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Encourage earlier 
jobs to finish first

Total cost knob setting
Average latency on workload

Optimizer

update 

knob settings

Workload

Solver has “knobs“ to tune
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Off-line training

Fiddle 
with knobs

Run entire workload

Feedback

Slow!

• The inefficiency: this loop explores one policy per run.

• How do we tighten the loop to get feedback more often?

Open up the solver

• Reasonable way to tune knobs off-line (used by PhiPac, ATLAS, SATZilla)
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• Parallelizing independent computations
• Ordering dependent computations

• Join strategies
• Forward vs. backward chaining (update-driven vs. query-driven)
• Dynamically identify unnecessary computation

• Short-circuiting, branch-and-bound/A*, watched variables
• Consolidating related work

• Static or dynamic batching (consolidating similar tasks, including GPU)
• Inlining depth (consolidating caller-callee) 

• Storage
• Memoization policy; choose low-level data structures

Strategy options
Solver should systematize all the reasonable implementation tricks that programmers 
might use and make them work together correctly.

Many strong interactions among decisions
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• Set-at-a-time inference (Filardo & Eisner, 2017, in preparation)

• Lots of progress to come!
• Nathaniel Wesley Filardo is tying up many loose ends in his thesis 

(September 2017)
• He’s on the job market!
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Policy probabilities that are tuned over 
time (typically approaching 0 or 1)



31

Policy probabilities can be sensitive to context of task



31

Stochastically conditioned on the following information (features).

Policy probabilities can be sensitive to context of task



31

Stochastically conditioned on the following information (features).

• Task characteristics
- What type of task?
- What are the task parameters?
- Who requested the task?

Policy probabilities can be sensitive to context of task



31

Stochastically conditioned on the following information (features).

• Task characteristics
- What type of task?
- What are the task parameters?
- Who requested the task?

• Dataflow
- What depends on this task (children)?
- What does this task depend on (parents)?

Policy probabilities can be sensitive to context of task



31

Stochastically conditioned on the following information (features).

• Task characteristics
- What type of task?
- What are the task parameters?
- Who requested the task?

• Dataflow
- What depends on this task (children)?
- What does this task depend on (parents)?

• Agenda characteristics
- Are there a lot of open queries?
- What’s on the agenda? How long has it been there?

Policy probabilities can be sensitive to context of task



31

Stochastically conditioned on the following information (features).

• Task characteristics
- What type of task?
- What are the task parameters?
- Who requested the task?

• Dataflow
- What depends on this task (children)?
- What does this task depend on (parents)?

• Agenda characteristics
- Are there a lot of open queries?
- What’s on the agenda? How long has it been there?

• Cache characteristics
- Statistics: number, hit rate, frequency, & recency of memos (broken down by type)

Policy probabilities can be sensitive to context of task
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Temporal difference learning

Approximate dynamic programmingMake estimator agree with itself



Actor-critic policy gradient



Actor-critic policy gradient



Actor-critic policy gradient

Says increase the probability 
of lower cost actions.



Actor-critic policy gradient

Says increase the probability 
of lower cost actions.



Actor-critic policy gradient

Says increase the probability 
of lower cost actions.

update q
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Summary

• Declarative languages lend themselves to automated optimization 
because their solvers have a lot of freedom.

• Tuning such as solver is a sequential decision making problem that 
can be tuned with online reinforcement learning techniques.

• Dyna 
• Has been designed from the ground up be as flexible as possible. 
• A powerful language for specifying machine learning applications.

Check out the paper! Lots of great technical details in the paper that 
didn't have time to get into.
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• We have to two language prototypes 
• Dyna 1 prototype (2005) was used  in Jason’s lab, fueling a dozen 

NLP papers!
• Dyna 2 prototype (2013) was used for teaching an NLP course to 

linguists with no programming background.
• Both were inefficient because they used too many one-size-fits-all 

strategies.

State of the language



Thanks!
Questions? Comments?

@xtimv

@matthewfl

http://dyna.org

Hire Wes Filardo!
http://cs.jhu.edu/~nwf

http://dyna.org/
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Loop order, sparse vector product example

40
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Don’t do 
and 
even wait until all of 

Join strategies
• Outer loop on b(J,4), inner loop a(I,J)
• Outer loop on a(I,J), inner loop b(J,K), filter K==4
• Sort a and b on J and use Baeza-Yates intersection
• What if we can’t loop over b? e.g., 

b(I,K) = X*Y.

• In natural language parsing with the CKY algorithm, an 
unexpected loop order turned out to be 7-9x faster than the 
loop order presented in most textbooks because of cache 
locality (Dunlop et al. 2010).

% matrix multiplication

c(I,K) += a(I,J) * b(J,K).
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Don’t do 
and 
even wait until all of 

Memoization and data structures
• Do we store results for future use? 

(tradeoff: memos must be kept up-to-date!)
• What data structure? 
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Don’t do 
and 
even wait until all of 

Batching, answering bigger queries/updates
• Batch pending c queries.
• Preemptively compute a broader query, c(I,K)

Use clever mat-mul alg. (sparse or dense?)
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Don’t do 
and 
even wait until all of 

Inlining
• Inline a and/or b queries.
• Bypass agenda and route directly to consumer, e.g., 

d(I) max= c(I,K).

• Reduce overhead of method calls
• Reduce overhead of task indirection through agenda



Mixed policies

• Mixed task strategies selection
• Policy will encounter similar tasks frequently

• Mixed storage strategies
• e.g., use a hash table, prefix trie, dense array, …

• Problem: random choice of strategy might not be consistent 
• E.g. might write to A and read from B (because of randomness)

45



Storage

46

edge("a", "b") = 1.

edge("b", "c") = 2.

edge("c", "d") = 5.

pathCost("a", "d") = 8.

pathCost("a", "c") = 3.

Queries
? edge("a","b")

? edge("a",Y)

? edge(X,"b")

? edge(X,Y)

? edge(X,X)

? edge(X,Y) >= 10

What’s the weight of edge a->b
Outgoing edges from a
Incoming edges to b
List all edges
List all self loops
Edges with weight >= 10

Name of map

key

value
Named maps 
key -> value

Implementations?
Hash cons, trie (different orders on keys), 
dense vs. sparse, sorted (what to sort on)

Efficiency depends on 
- Frequency of different queries
- Overhead of read/writes
- Sizes
- Lower-level thresholds



Mixed storage solution

47

Hash table Trie 1->2 Trie 2->1

hash(edge("a", "b")) / 2^32 ~ Uniform(0,1)

edge(:any,:any)

Small, temporary 
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1. Bandit: Each time we execute a task (e.g., compute 
c(I,j) for an argument j):
• Randomly try one of the available strategies 

(explore) according to some probability distribution
• Bias this distribution in favor of strategies with 

lower measured cost (exploit).
2. Contextual bandit: Allows distribution to depend on task 

arguments (e.g., j) and solver state.
3. Reinforcement learning: Accounts for delayed costs of 

actions.

Learning to choose a good strategy

thread

agenda

strategy
run

pop

new 
tasks

computed 
values

choose!

choose!
memoize

cache

lookup

task

response

queries & 
updates
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Back to online training…

Run entire workload

Feedback

Fiddle 
with policy
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Solver Actions

Policy actions

Workload
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Rewrite in terms of the 
policy’s time scale (used in RL)

Rewrite the objective function

Each step tries to 
decrease the load

Workload i

Actions t

TODO inline in parens
use underbrace to give it a name

Add Jason integral picture?
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Use ML to predict 
future costs!

Life of π

Generalize from past 
experience to new 

situations

Features:
- Memos (number, hit rate, frequency, recency)
- Pending tasks (number, age)
- Current load (proximity-to-completion heuristics)
- Dataflow graph

- Will this be used again?
- Are other jobs blocking on it? 
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Back to π

What should π do in this state?

Predicting the future requires 
richer features than simply 

learning to take good actions.

We need π to be really fast to execute!
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Run entire workload

Feedback

Fiddle 
with policy

updateupdate

Feedback


