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𝑋 < 𝑌 && 𝑌 < 𝑋
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THINGSSQL Datalog Prolog CLP Dyna

Finite ✓ ✓ ✓ ✓ ✓

Deductive ✗ ✓ ✓ ✓ ✓

Infinite 
relations

✗ ✗ ✓ ✓ ✓

Aggregation ✓ ✓ ✗ ✗ ✓

Turing 
complete

✗ ✗ ✓ ✓ ✓

Constraints ✗ ✗ ✗ ✓ ✓ Hard to mix

Dyna vs.  Prior Work
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Aggregation + Infinite

Aggregators
• OR – Exists A True Branch

• Used in Prolog (:-)
• Can stop early if find true value

• AND – Not exist false branch

• Sum/Product – exhaustive expansion of non-
identity contributions

• Max/Min – Structured Search problem or 
exhaustive search

Infinite Relations
• ∑ 𝑖=0 ∞ 𝑖𝑖=0 ∑ 𝑖=0 ∞ ∞ ∑ 𝑖=0 ∞  1  2 𝑖 1 1  2 𝑖 2 𝑖
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• 𝑋 :𝑋≥5 𝑋𝑋 :𝑋𝑋≥5 𝑋 :𝑋≥5 )=5

• m( 𝑋 :𝑋≥5 𝑋𝑋 :𝑋𝑋≥5 𝑋 :𝑋≥5 )=∞

• : 𝑋𝑋≥5 𝑋 : 𝑋≥5 

• Infinite …..
• Can’t use a naïve enumerate strategy unless it stops 

early

• Require special rules to understand sequencesm(ሼ
ሽ

𝑋 ∶
𝑋 ≥ 5 ) = ∞

• 𝑋 ∶ 𝑋 ≥ 5 ) = 5

•
1

2𝑖 = 2
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I can range over 
any value, not 
just integers
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Dyna = Logic Programming + Aggregation
a(I) :- b(I), c(I).

• pointwise logical AND

a(I) = b(I) * c(I).

• pointwise multiplication

a += b(I) * c(I).

• dot product

a(I,K) += b(I,J) * c(J,K).

• matrix multiplication; could be sparse

• J is free on the right-hand side, so we sum over it

b(I,I) += 1.   b(I,J) += 0.

• Infinite identity matrix

5
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aggregated over like 

with the dot 
product example.
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Example Program: Shortest path

6

distance(Start, Y) min= distance(Start, X) + edge(X, Y).
distance(Start, Start) min= 0.

edge("a", "b") = 10.
edge("b", "c") = 2.
edge("c", "d") = 7.

Start Y distance(Start, Y)

"a" "a" 0

"a" "b" 10

"a" "c" 12

"a" "d" 19

"b" "b" 0

"b" "c" 2

"b" "d" 9

"c" "c" 0

"c" "d" 7

"d" "d" 0

Dyna programs are 
equivalent to the 
set of values they 

define



Example Program: Shortest path

6

distance(Start, Y) min= distance(Start, X) + edge(X, Y).
distance(Start, Start) min= 0.

edge("a", "b") = 10.
edge("b", "c") = 2.
edge("c", "d") = 7.

Start Y distance(Start, Y)

"a" "a" 0

"a" "b" 10

"a" "c" 12

"a" "d" 19

"b" "b" 0

"b" "c" 2

"b" "d" 9

"c" "c" 0

"c" "d" 7

"d" "d" 0

Start Y distance(Start, Y)

"foo" "foo" 0

7 7 0

3.1415 3.1415 0

Defined for all 
cases where both 

arguments are 
equal
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distance(S, Y) = distance(S, X) + edge(X, Y).

distance(S, S) = 0.
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Shortest Path (cont.)
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distance(S, Y) = distance(S, X) + edge(X, Y).

distance(S, S) = 0.

ሼ 𝐴𝑟𝑔1, 𝐴𝑟𝑔2, 𝑅𝑒𝑠𝑢𝑙𝑡 : 𝐴𝑟𝑔1 = 𝐴𝑟𝑔2 𝐀𝐍𝐃 𝑅𝑒𝑠𝑢𝑙𝑡 = 0ሽ

Tuple of Named Variables Executable Code Defines the Rule

S Y distance(S, Y)

"foo" "foo" 0

7 7 0

3.1415 3.1415 0

Because of recursion, it can not be expressed using the set builder notation
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distance(Start, Y) = edge(X, Y) + distance(Start, X).

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

Normalize with standard 
names for all arguments
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distance(Start, Y) = edge(X, Y) + distance(Start, X).

(E is edge(Arg2, X))

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

R-expr to Call 
function by name
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distance(Start, Y) = edge(X, Y) + distance(Start, X).

(E is edge(Arg2, X))

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

R-expr to Call 
function by name

Intermediate  
results are 
mapped to 
variables
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distance(Start, Y) = edge(X, Y) + distance(Start, X).

(E is edge(Arg2, X))

(D is distance(Arg1, X))

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

Recursive 
call to 

distance
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distance(Start, Y) = edge(X, Y) + distance(Start, X).

(E is edge(Arg2, X))

(D is distance(Arg1, X))

builtin_plus(Result, E, D)

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

Built-in 
represented in the 

R-expr
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distance(Start, Y) = edge(X, Y) + distance(Start, X).

(E is edge(Arg2, X))

(D is distance(Arg1, X))

builtin_plus(Result, E, D)

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

∩*
∩*

Intersect the bag by 
multiplying the 

multiplicities and 
joining these 

expressions using 
the same variable 

names
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distance(Start, Y) = edge(X, Y) + distance(Start, X).

(E is edge(Arg2, X))

(D is distance(Arg1, X))

builtin_plus(Result, E, D)

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

∩*
∩*

Over the tuple ⟨Arg1, Arg2, Result, E, D, X⟩
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distance(Start, Y) = edge(X, Y) + distance(Start, X).

(E is edge(Arg2, X))

(D is distance(Arg1, X))

builtin_plus(Result, E, D)

Result is distance(Arg1, Arg2) :-
Result = edge(Arg2, X) + distance(Arg1, X).

∩*
∩*

proj(E, proj(D, proj(X,    )))

Now Over the tuple ⟨Arg1, Arg2, Result⟩

Project out all 
local variables
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What about Aggregation?

9

distance(S, X) min= edge(X, Y) + distance(S, Y).

• Any semi-group: min, max, sum, product, logical OR, logical AND

R-expr 
composed on 
previous slide

New 
intermediate 

variable 
introduced

(Like project)

Resulting 
value from 
aggregation

(Result=min(MinInputVariable, R))
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distance(S, S) min= 0.
distance(S, X) min= edge(X, Y) + distance(S, Y).

Result is distance(Arg1, Arg2) min= Arg1=Arg2, Result=0.
Result is distance(Arg1, Arg2) min= Result=edge(Arg2, Y) + distance(Arg1, Y).

proj(E, proj(D, proj(Y, 
(E is edge(Arg2, Y)) * (D is distance(Arg1, Y)) * builtin_plus(MinInput, E, D)
)))

(Arg1=Arg2) * (MinInput=0)

∩ ∩

∩
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Shortest Path All Together Now

10

distance(S, S) min= 0.
distance(S, X) min= edge(X, Y) + distance(S, Y).

Result is distance(Arg1, Arg2) min= Arg1=Arg2, Result=0.
Result is distance(Arg1, Arg2) min= Result=edge(Arg2, Y) + distance(Arg1, Y).

proj(E, proj(D, proj(Y, 
(E is edge(Arg2, Y)) * (D is distance(Arg1, Y)) * builtin_plus(MinInput, E, D)
)))

(Arg1=Arg2) * (MinInput=0)

∩ ∩

∩( )

( )
∪+

(Result=min(MinInput, 

))

The complete distance 
rule as a R-expr
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Manipulating R-exprs via Rewrites

• A series of semantic preserving rewrites which attempt to simplify the 
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builtin_plus(1,2,Z) → (Z=3)

builtin_plus(X,Y,Z) ≡ ሼ 𝑋, 𝑌, 𝑍 : 𝑋 + 𝑌 = 𝑍ሽ

builtin_plus
runs and its result is 

assigned Z
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builtin_plus(1,2,Z) → (Z=3)

builtin_plus(1,Y,Z)

builtin_plus(X,Y,Z) ≡ ሼ 𝑋, 𝑌, 𝑍 : 𝑋 + 𝑌 = 𝑍ሽ

No rewrites 
available for: 

1+Y=Z

Y=1, Z=2
Y=2, Z=3
Y=3, Z=4

….



R-expr Rewrites—Built-ins

12

builtin_plus(1,2,Z) → (Z=3)

builtin_plus(1,Y,Z)

(Z=3)*builtin_plus(1,Y,Z)→(Z=3)*builtin_plus(1,Y,3)

builtin_plus(X,Y,Z) ≡ ሼ 𝑋, 𝑌, 𝑍 : 𝑋 + 𝑌 = 𝑍ሽ
Propagate the 

assignment to Z



R-expr Rewrites—Built-ins

12

builtin_plus(1,2,Z) → (Z=3)

builtin_plus(1,Y,Z)

(Z=3)*builtin_plus(1,Y,Z)→(Z=3)*builtin_plus(1,Y,3)

builtin_plus(X,Y,Z) ≡ ሼ 𝑋, 𝑌, 𝑍 : 𝑋 + 𝑌 = 𝑍ሽ

(Z=3)*builtin_plus(1,Y,3)→(Z=3)*(Y=2)

Propagate the 
assignment to Z

Built-ins support 
multiple modes
for computation
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builtin_plus(1,2,Z) → (Z=3)

builtin_plus(1,Y,Z)

(Z=3)*builtin_plus(1,Y,Z)→(Z=3)*builtin_plus(1,Y,3)

builtin_plus(1,2,3) → 1
builtin_plus(1,2,4) → 0

builtin_plus(X,Y,Z) ≡ ሼ 𝑋, 𝑌, 𝑍 : 𝑋 + 𝑌 = 𝑍ሽ

(Z=3)*builtin_plus(1,Y,3)→(Z=3)*(Y=2)

Check 
assignment 

is 
consistent

Maps to the 
multiplicity of 

being contained in 
the bag

* and  +
are over the 

bag’s 
multiplicity
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(Result=min(MinInput, (MinInput=789))) → (Result=789)

A final value has 
been determined.  

Assign it to the 
Result Variable
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(Result=min(MinInput, (MinInput=789))) → (Result=789)

(Result=min(MinInput, R+S)) → builtin_min(MR, MS, Result)*
(MR=min(MinInput, R))*(MS=min(MinInput, S))

Two disjunctive 
R-exprs can be split 

and processed 
individually 
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(Result=min(MinInput, (MinInput=789))) → (Result=789)

(Result=min(MinInput, R+S)) → builtin_min(MR, MS, Result)*
(MR=min(MinInput, R))*(MS=min(MinInput, S))

(Result=min(MinInput, 0)) → (Result=identity) ≡ (Result=∞)

not_identity(identity) → 0
not_identity(V) → 1 if ground(V) && V != identity

(Result=min(MinInput, 0))*not_identity(Result) → 0

More 
“traditional” for 
aggregation to 
map empty to 

empty
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run in a myriad of different execution orders

• Extended version of this paper to (hopefully) appear soon

• Exploring and learning different execution orders
• R-exprs capture what needs to be computed while leaving the order and how

open to the runtime to decide

• Much like a database optimizer, but for full, long running programs

• Compilation and optimization of R-exprs

• github.com/matthewfl/dyna-R          arxiv.org/abs/2010.10503
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Thank you

Questions?

github.com/matthewfl/dyna-R

arxiv.org/abs/2010.10503

mfl@cs.jhu.edu
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