
DJ
Distributed JIT

Matthew Francis-Landau

UC Berkeley

September, 2015

Structure of DJ

I Runtime
I Performs dynamic code rewriting
I Remote memory access
I Distributed locks
I **Ensure correctness of program regardless of distributed state

I JIT
I High level placement/scheduling decisions about a program
I Regardless of placement decisions program will continue to

execute correctly
I Could potentially be replaced with a user supplied JIT

Some rewriting details

I Reads and writes of fields on an object are replaced with a
inlinable method call

I Replacement only happens if there is at least one instance of
the object that is distributed

I Method calls when transformed to RPC, have a some bytecode
inserted at the beginning to check if it should be an RPC call

I Array classes are replace so that all reads and writes can be
observed and accessed remotely

Example field access

// before

a = 5;

// rewritten

write_variable_a(this, 5);

// ...

static void write_variable_a(ObjectType self, int val) {

if((self.__dj_class_mode & 0x2) != 0) {

// .. redirect write

}

self.a = val;

}

I write variable a is a static method call which means that
the JVM can inline it

I This rewrite takes place one there exists an instance of the
class that is distributed1

1shared between two or more machines

Example RPC header

int doSomething(int a, Object b) {

if((this.__dj_class_mode & 0x40) != 0) {

// this can lookup where this method call

// should run perform the method call

// and then return the result

return (int)RPCHelper.doRPC(this, "doSomething",

new Object[]{a, b});

}

// body of method

}

I Each method converted to RPC could check a different bit in
the dj class mode field

I This rewrite happens gradually as the system decided to
convert methods to be RPC

Example Array rewrite

// before

int a[] = new int[5];

a[4] = 6;

// rewritten

dj.arrayclazz.int_1 a =

dj.arrayclazz.int_1.newInstance_1(5);

a.set(4, 6);

I The implementation of newInstance, set and get can be
anything that behaves like an array.

I For example set could check a bit to see if the array is in
some distributed mode, and then perform a lookup of where
the cell 4 is located.

I This rewrite always takes place since we can’t change the type
of an array instance after it is created

Distributed object GC

I Current plan is to implement a distributed reference counting
system

I A node can use weak pointers to track when a node has lost
references to an object

I If the system was to have some scavenger like GC then would
likely have a lot of network communication to find objects
that can be GC

I Local GC is still handled by the JVM and should continue to
perform similarly.

Currently Missing standard Java components

I Program defining class loader (common in spark like systems,
even some unit test frameworks)

I Distributed IO (filesystem, network)

I Weak pointers

I Reflection (partially broken, names are getting mangled)

I GUI frameworks/crypto/”less core libraries” (may work using
native bridge, not tested)

I Unsafe (used for performing direct memory access, need to
handle when the object is remote).

Distributed IO question

I Q: How to expose network sockets to a program that is
running on multiple machines now

I if you open a network connection should it always redirect
through the same machines (same ip)

I if open a listening socket should that just start on a random
machine, or all machines

I Q: with the file system, where should new files be created

I Could augment file system api with something like
/machine-$id/that-machines-fs for fs names

Libraries that would like to get working

I Jetty/Tomcat: Http server, lots of things using http
I JBlas: Lots of scientific computation are at their core are

wrapping Blas
I Is really just a bunch of native method calls to C code and

then uses a provided C blas library

I JUnit/some unit testing: would be nice to just run the unit
tests of existing programs

I Akka: Communication framework, should replace with DJ
interfaces

Types of targeted programs

I Distributed scientific applications

I Combining and splitting service oriented applications

I Edge computation when there is some δ time delay between
the edge and servers

I Easily write distributed applications using this as a base
framework

Current Scientific applications

I Commonly written in low level system languages. (Not many
in Java/managed)

I Currently require that distribution managed explicitly
I Current efforts to manage distribution

I Chapel, UPC: distribution of data is part of the language, but
still require annotation

I Grappa: Small computation that moves towards the data

DJ with scientific applications

I Able to write the program in a higher level managed language

I Same code that was written for a single JVM can now be
used on a distributed system

I Data and computation can be relocated during the running of
the program

I “More general method” that can simulate how Grappa works
with moving computation towards data

I Data placement can also be controlled like UPC/Chapel

Current service oriented setups

I Every service is deployed as its own application

I Some RPC/serialization layer between services (protobuf,
thrift, etc)

I One application per machine (virtual machine/container)
I Communication still taking place over network interface using

the RPC layer

DJ with service oriented setups

I Would write a small inner communication management
framework on top of DJ

I All services would communicate with this simple layer rather
then using the RPC library

I All services could start by running in the same JVM, would
avoid communication/seralization overhead

I As a service needs more resources it can be moved to a new
machine (splitting the application)

I As load drops, the program could be recombined (less
resources used, less RPC overhead)

I Splitting an application need not happen at the obvious
boundaries

I Eg: if caching application, could have a bloom filter on one
machine and the data on another

Current edge computation

I Mobile application caching some data from a server side

I Web pages with CDN caching only static content

I NoSQL with distributed database at the edge

I Game server maintain all the state at a centralized location

DJ with edge computation

I Basically two or more sets of resources that you want quick
access to

I Central database
I Users GUI

I Edge computers may have different communication with
centralized database, memory resources, processing resources

I Maybe some intermediate place which can provide high
computational/memory resources that is near the edge (FOG)

I Placement of memory/caches/computation is automatically
handled

DJ as a base framework for distributed applications

I Currently to experiment with a new type of distributed
application (Map reduce, graph processing, etc) have to write
a lot of networking and resource management code

I Think similar to what Graal/PyPy have done dynamic
languages, DJ is doing for distributed programs

Example code for Map reduce using DJ

objects.par.map(obj => {

// map opertation

(map_key, map_value)

}).groupBy(_._1).map(objs => {

// objs._1 == map_key

// objs._2 == map_values

for(value <- objs._2) {

// do something with a value

}

})

Using simple language constructs of scala’s .par to perform the
map operations in parallel over the data set of objects.
This code could easily be run on a unmodified JVM and would run
the computation across multiple threads instead of multiple
machines.

Code that currently works on DJ

// wait until there is a second machine running

while(InternalInterface.getInternalInterface.getAllHosts.length

== 1) {

Thread.sleep(1000)

}

for(h <- InternalInterface.getInternalInterface.getAllHosts;

if h != InternalInterface.getInternalInterface.getSelfId) {

val future = DistributedRunner.runOnRemote(h,

new Callable[Int] {

override def call = {

// do computation

123

}

})

println("got the value "+future.get)

}

Next steps

I Larger programs/more data

I Fuzzer to find errors when running distributed

I JIT interfaces to manage the distribution of the program

I GC distributed objects

