Matthew Francis-Landau

Nathan Pemberton

Sven Schwermer

University of California, Berkeley

Introduction

In the cloud, ease of use and interactivity are key. Typically,
jobs are deployed on multi-core virtual machines. Each core
of the VM is scheduled independently, leading to high
variability in each thread’s completion time. The HPC
community requires predictable performance of every
thread in order to minimize the time spent in barriers. To
achieve this, supercomputers typically use batch-managers
which run each job to completion. This maximizes the
performance of each job, but may cause small jobs to wait
behind larger jobs.

HPC i

Core 0 J1 J1 IJ1}
Cloud (
T DE

Gang Schedule

Figure 1: Example schedules under different policies. HPC uses a batch manager (such
as Slurm or Torque). Cloud uses the default Xen scheduler which makes no attempt to
gang schedule. The Gang Scheduled policy starts all of a job’s threads at the same time.

This project seeks a middle ground, where programmers can
rely on predictable performance of each thread (leading to
efficient barriers) without having to wait for large jobs to
finish before starting. We achieve this using gang scheduling,
where all of a job’s threads are started and ended together.

Too Many Cooks in the Kitchen:

Experimental Setup

The benchmark ran Linux virtual machines on top of the Xen
4.4 hypervisor[2]. The Linux virtual machines used a stripped
down Linux kernel 3.14 For the baseline cases we used Xen’s
default credit scheduler. For gang-scheduling we
implemented a custom scheduler on top of Xen and ran the
domains in an isolated CPU pool.

CoEVP

For our experiments we used the CoEVP proxy-application
from the Exascale Co-design Center for Materials in Extreme
Environments (ExMatEx)[1]. It works by spawning a number
of fine-scale models, and interpolating their results into a
coarse-grained model.

140.0

120.0

—
o
o
o

80.0

60.0

Run time in seconds

I
o
o

20.0

0.0

Gang Cloud HPC

Figure 2: Average run-time of CoEVP under different scheduling policies.

Despite the focus on performance in the HPC community,
batch processing produces the worst runtimes of any

experiment. We speculate this performance difference is due

to blocked threads in CoEVP. While a thread from one job is
waiting for communication, other jobs could run.

CPU time off by more than 100ms

Gang Scheduling for Predictable Performance

Micro-Benchmark

To see the effects of gang-scheduling we implemented a
micro-benchmark that performs a compute-bound task
repeatedly. We then start this benchmark simultaneously on
each core. In figure 3 we plot how many times a core
completes more than 1 iteration (roughly 100ms) after the
others on the two schedulers. As you can see from Figure 3,
the credit scheduler has significantly higher variation in
execution times with many out-of-sync threads.

1400
« »Credit Scheduler

—_—
N
()
o

“®Gang Scheduler
1000 .

800

1 domain 2 concurrent 3 concurrent 4 concurrent
domains domains domains

(@)
o
o

Figure 3: Variability in execution time with over-subscription of domains on Xen.

Conclusions

While gang scheduling does indeed improve the consistency
of simple, compute-bound tasks like our micro-benchmark,
complex benchmarks like CoEVP seem to benefit less. While
this may be a fluke of CoEVP, it is clear that not all tasks will
benefit from this style of scheduling. In the future we plan
explore more flexible forms of scheduling that minimize
barrier delays while still accounting for blocked tasks and the
benefits of CPU oversubscription.

References

[1] https://github.com/exmatex/CoEVP
[2] http://www.xenproject.org/




